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Abstract

Let I'xy denote the space of all locally finite configurations in a complete, stochastically complete,
connected, oriented Riemannian manif&lgdwhose volume measuneis infinite. In this paper, we
construct and study space% 2" of differentialn-forms overl'y that are square integrable with
respect to a probability measureon I'y. The measurg is supposed to satisfy the conditiarj,
(generalized Mecke identity) well known in the theory of point processeim, we introduce
bilinear forms of Bochner and deRham type. We prove their closabilty and call the generators of
the corresponding closures the Bochner and deRham Laplacian, respectively. We prove that both
operators contain in their domain the set of all smooth local forms. We show that, under a rather
general assumption on the measuréhe space of all Bochner-harmoniesquare-integrable forms
on I'y consists only of the zero form. Finally, a Weitzenbdck type formula connecting the Bochner
and deRham Laplacians is obtained. As examples, we consider (mixed) Poisson measures, Ruelle
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type measures ofiz., and Gibbs measures in the low activity—high temperature regime, as well as
Gibbs measures with a positive interaction potentialgn
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let I'y denote the space of all locally finite configurations in a complete, stochastically
complete, connected, oriented Riemannian maniotf infinite volume. The growing in-
terest in geometry and analysis on the configuration spgesn be explained by the fact
that these naturally appear in different problems of statistical mechanics, quantum physics,
and the theory of point processes.[f+-9], an approach to the configuration spaces as
infinite-dimensional manifolds was initiated. This approach was motivated by the theory
of representations of diffeomorphism groups (§&&28,53] these references as well as
[9,11] also contain discussion of relations with quantum physics). We refer the reader to
[10,11,38,50]and references therein for further discussion of analysis on the configuration
spaces and applications. Let us stress hais essentially the space of infinite configura-
tions. Geometry and topology of the spaces of finite configurations have been discussed by
many authors, sg@5] and the references therein, and form quite a different field.

On the other hand, stochastic differential geometry of infinite-dimensional manifolds,
in particular, their (stochastic) cohomologies and related questions (Laplace operators and
Sobolev calculus in spaces of differential forms, harmonic forms, Hodge decomposition),
has been a very active topic of research in recent years. It turns out that many important
examples of infinite-dimensional nonflat spaces (loop spaces, product manifolds, configu-
ration spaces) are naturally equipped with probability measures (Brownian bridge, Poisson
measures, Gibbs measures). Properties of these measures depend in a nontrivial way on the
differential geometry of the underlying spaces themselves, and play therefore a significant
role in their study. Moreover, in many cases the absence of a proper smooth manifold struc-
ture makes it more natural to work with?-objects (such as functions, sections, etc.) on
these infinite-dimensional spaces, rather than to define analogs of the smooth ones.

Thus, the concept of ah?-deRham complex has an important meaning in this frame-
work. The study ofL2-cohomologies for finite-dimensional manifolds, initiated[116],
has been a subject of many works (see, f1§,22,24]and the review papeigl1,46).

In the infinite-dimensional case, loop spaces have been most sf2digd,36,37] the
paperg23,37] containing also a review of the subject. The deRham complex on infinite
product manifolds with Gibbs measures (which appear in connection with problems of
classical statistical mechanics) was constructed. jB] (see alsd17] for the case of the
infinite-dimensional torus). We should also mention the paf@i3—-15,52] where the
case of a flat (Hilbert) state space has been considered.@wehomological structure
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turns out to be nontrivial even in this case due to the existence of interesting measures on
such a space).

In [3,4], the authors started the study of differential forms over the infinite-dimensional
spacel’y and the corresponding Laplacians (of Bochner and deRham type) acting in the
L?-spaces with respect to a Poisson measurfs]Irthe associatefl>-cohomologies have
been investigated.

Another approach to the construction of differential forms and related objects over Pois-
son spaces, based on the “transfer principle” from Wiener spaces, was prop@sidsee
also[47,48)).

It should be stressed that the choice of an underlying measure plays a crucial role in all
these studies. The results[8f5] have only covered the case of Poisson measures, which
are related to mathematical models of “free” systems, i.e., systems without interaction.
The choice of more complicated measures, such as Gibbs type perturbations of Poisson
measures, is particularly motivated by the study of interacting systems of classical statistical
mechanics. Properties of the corresponding Laplace operators may then strongly depend
on the choice of an appropriate measure.

In order to develop a reasonable theory covering also this case, we need to restrict our-
selves to a class of measures bR that possess a certain regularity. So, we consider
those measures which satisfy the following condition: for any measurable function
I'y xX—> R, F>0:

/F pdy) Y Fyx) = /F pu(dy) /X a(y, dv) F(y U {x}, x), (1.1)

xey

whereo(y, -) is a Borel measure oi which is absolutely continuous with respect to the
volume measure on X for u-a.e.y € I'x. In particular, the Poisson measure with intensity
p(x)m(dx) satisfieg(1.1) with o(y, dx) = p(x)m(dx), and in this cas€l.1) becomes the
classical Mecke identit{43] (see als$30,31)). Furthermore, as shown by Geori#ib] and
Nguyen and Zessif5], (1.1) holds for all Gibbs measures. The class of all probability
measures o’y satisfying(1.1) was singled out irj42] (see alsd54]), where(1.1) was
called condition¥’, . A relation between this condition and an integration by parts formula
for a measure: was studied if38].

An iterated application ofl.1)to a functionF : I'y x X¥ — R, k € N, gives rise to a
family of random measures® (y) on X*.

The structure of the present paper is as followsSétion 2wve recall the definition of a
differential form overl'y, first given in[3,4], and introduce the spac&ﬁﬂ" of forms that
are square integrable with respecftoWe construct a unitary isomorhism:

n
72 2 2 k
rae->@pLir- U L2, YamXH) || (1.2)
k=1 yelx
whereL2 (I'y — UyerLg(k>(y) w2 m(X5)) is the space ofi-square-integrable mappings:

x>y Wy elL?, (V)wgym(x") (1.3)
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2
andLZy .,

to o™ (y) and satisfy some additional conditions. In the case whdsea Poisson measure
7, the isomorphisni” was constructed ifb].

In Section 3we define Bochner type operatorsliﬁfz". First, we introduce the bilinear
form:

wgym(xk) is a space of-forms overX* that are square integrable with respect

WD W)= [ (VWO YW )ty
I'y

on the space of smooth local forms, wh&t€ is the covariant derivative ofy (introduced
in [3,4]), and prove its closability. We call the corresponding generlaﬁy; the Bochner
Laplacian onl"y associated withu.

Further, we show that, under the action of the isomorphi8nthe formEIBM can be
expressed via Bochner type bilinear form%k) . associated with the measure¥ ()
onX* k=1,...,n, u-a.e.y € I'x. As an application of this result, we derive sufficient
conditions for the space of all Bochner-harmanisquare-integrable forms dry to consist
only of the zero form. Let us remark that we do not assume extremality, o that
nonconstanf:.-square-integrable harmonic functions B may in general exiqtL0].

In Section 4 we introduce and study the structure of the deRham complex in the spaces
Lﬁ.Q". Following [5], we first define a Hodge—deRham differential on the space of

smooth local forms. We prove the closability of tHg's as operators fronLﬁQ" into
L2 2"t and consider the Hilbert complex:

d,_ d d
e STL2on 2ot

whered,’s are the corresponding closures. Next, we define a Hodge—deRham Laplacian
Hﬁ,n as the generator of the closed form:

gs’n(W(l), W(Z)) = (an W(l), an W(Z))LﬁQrHrl + (d;:_]_W(l), d:_lW(z))LlZL_Qn—l

on Li.Q” with domainD(SE’n) = D(Ei,,)ﬂD(dj;_l). We prove that, under certain additional
conditions oru, the domain of the operatdaffjﬂ contains smooth local forms. This gives
us a possibility to prove, deE’n andHff’n, an analog of the Weitzeb6ck formula.

In Section 4 we consider our main examples: Gibbs measures with pair interaction on
I'x. More exactly, we consider in details Ruelle type measurdser(cf. [51]), and Gibbs
measures in the low activity—high temperature regime, as well as Gibbs measures with
positive potentials oy . In these cases, we get more explicit expressions for the Bochner
and deRham Laplacians.

2. Differential forms over a configuration space

Let X be a complete, connected, orient€d; Riemannian manifold of infinite volume.
Let d denote the dimension df. Let (-, -), denote the inner product in the tangent space
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T X to X at a pointx € X. The associated norm will be denoted|by,. Let VX stand for
the gradient orX.

The configuration spac€y over X is defined as the set of all locally finite subsets
(configurations) inX:

I'x :={y C X||yal < ooforeach compact C X }.

Here,y, := y N A and|A| denotes the cardinality of a sét
We can identify any € 'y with the positive, integer-valued Radon measure:

D ex € M),

xey

wheree, is the Dirac measure with mass@ad , _, ¢, :=zero measure, ant (X) denotes
the set of all positive Radon measures on the Bot@gebra3(X). The spacé’y is endowed
with the relative topology as a subset of the spad¢éX) with the vague topology, i.e., the
weakest topology oif’y with respect to which all maps:

resye (69 = [ fonds =3 fw

xey

are continuous. Herg, € Co(X) (:= the set of all continuous functions éhwith compact
support). LetB(I'x) denote the corresponding Borelalgebra.
The tangent space iy at a pointy is defined as the Hilbert space:

T,y = L%(X — TX ) = ®rey i X. (2.1)
The scalar product and the normZp/x will be denoted by-, -),, and|| - ||,,, respectively.
Thus, eacl(y) e T, I'x has the formV(y) = (V(y, x))xe,, WhereV(y, x) € T: X, and

IV)I2 =" V(. 2.

xXEY

We now recall howto define derivatives of afunctién I'y — R.Lety € I'y andx € y.
By O,,x we denote an arbitrary open neighborhood of X such thatD, . N (y \ {x}) = @.
We define the function

Oyx3y Fr(y,y) '=Fy —&;+¢&) eR.

We say thatF is differentiable aty € I'y if, for eachx € y, the functionF,(y, -) is
differentiable atc and

VIFy) = (VXFW)rey € T,Tx,  VXF(y) = VXF (%)

Analogously, the higher order derivatives Bfare defined(V/)® F(y) e (T, I'x)®*,
k € N.

LetO¢(X) denote the setof all open, relatively compact sefs.iAfunctionF : I'y — R
is called local if there existd € Oc(X) such thatF(y) = F(y,) for eachy € I'y.
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Any function of the form:
Fly) = gr({p1, 7). -, (on, V), (2.2)

wheregr € Cgo(RN) andes, ..., ¢y € D= CF(X) (:= the set of all infinitely differ-
entiable functions oX with compact support), is local, bounded, infinitely differentiable,
and the derivatives of are polynomially bounded:
VkeNdpe CoX). ¢20:[(VHOFWIT, e < (0. 9) forally e Iy.
(2.3)

The set of all functions of the forrf2.2) will be denoted byFC° (D, I'x).

Vector fields and first order differential forms @ry will be identified with sections of
the bundlel' Ty . Higher order differential forms will be identified with sections of the tensor
bundlesn™(TT'x) with fibers:

N(TyTx) = A" (Brey Tx X) (2.4)

where A" (H) (or H™") stands for thesth antisymmetric tensor power of a Hilbert space
H. Thus, under a differential forrv of ordern, n € N, over I'xy, we will understand a

mapping:
I’y >y~ W(y) e N'(T, I'y). (2.5)

We will now recall how to introduce a covariant derivative of a differential f¢2b).
Lety e I'y andx € y. We define the mapping

Oy,x Sy Wiy y) = W(Vy) € /\n(TnyX)’ Vy =Y — &+ €.
This is a section of the Hilbert bundle:
N Ty, Ix) =y € Oy (2.6)

The Levi—Civita connection omX generates in a natural way a connection on this bundle.
We denote bw)fx the corresponding covariant derivative and use the notation

VW)V, Wiy, x) € TeX ® (N'(Ty T'x))

if the sectionW,(y, -) is differentiable at.
We say that the forni is differentiable at a point if for eachx € y the sectioriW, (y, -)
is differentiable at, and

VIW(y) == (VEWI)rey € T, Tx @ (N(T, I'x)).
The mapping
Iy 3y~ VW) e T,Ix ® (A (T, Ix))

will be called the covariant gradient of the fori.
Analogously, one can introduce higher order derivatives of a differential #rrPre-
cisely, thekth derivative(V!)® W(y) belongs taT, I'x)®* ® (A" (T, I'x)).
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Let us note that, for any C y, the space\"(T;,I'x) can be identified in a natural way
with a subspace oRk" (T, I'y). In this sense, we will use the expressiBfiy) = W(n)
without additional explanations.

Aform W : I'y — A"(ITx) is called local if there existd = A(W) € O¢(X) such that
W(y) = W(y,) for eachy € I'x.

Let 72" denote the set of all local, infinitely differentiable forms: I'y — A"(TTx)
such that there exigt € Co(X), ¢ > 0, and! € N (depending orW¥) satisfying:

MWz, 1y < (0, 7) forally e Iy, (2.7)

Below, we will give an explicit construction of a class of forms belonging1o”.
Let u be a probability measure @iy, B(I'x)) which has all moments finite, i.e.:

VkeN,Vype Co(X),9>0: / (@, ) u(dy) < oo. (2.8)
I'y

Our next goal is to give a description of the space-6brms that are square integrable with
respect to the measure

Let 72" denote theu-classes determined 2" . We define oFs2n" the L2-scalar
product with respect to the measwre

Vo Woizon = [ (W22, oot i@ (2.9)

The integral on the right hand side (£.9) is finite because of2.7) and (2.8) Now, we
define the Hilbert spaceﬁ(z” = L%(I'y — A"(ITx); ) as the completion offﬁ“
with respect to the norm generated by the scalar pro@u@}. In what follows, we will not
distinguish in notations betweeh2" and]/-'?z/"ﬂ, since it will be clear from the context
which of these sets we mean.

Letm denote the volume measureX¥nFrom now on, we suppose that, forany measurable
functionF : I'y x X - R, F > 0:

[ wten [ aorn = [ w@ [ otndoro e, (2.10)
I'y X Iy X
whereo(y, -) « m for u-a.e.y € I'y. We shall use the notation
do(y, -
p(y, x) = GO(IV )(x)-
m

In the theory of point processes, this property of the megsusecalled X, (see[42]). All
Gibbs measures, in particular, all Poisson measures satisfy this properfg §&%45).
We consider this case Bection 4

We will need the following consequence of the propexty. Let : y®* : be the measure
on X* given by

e dh) = Y £, @ ey (dr, L dig),
{1, }Cy
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where

~ N 1
£y Q- Qey, (dxp, ...,dxp) = F Z Eyo1) ®--® €Yot (dxq, ..., dxp),

O‘ESk

Sk denoting the group of all permutations{df . . ., k}.
For u-a.e.y € I'y, we denote by® (y, -) the measure o* given by

a(k)(y, dxq, ..., dxg) ;== o(y, dxp)o(y + &5, Ox2) - - o(y + €4y + -+ - + €44, Axp)
and letu® be the measure ofy x X* defined by

/,L(k) (dy, dx1, ..., dxg) = u(dy)a(k)(y, dx1, ..., dxp).

Lemma2.1. For any measurablé : I'y x X¥ - R, F > 0,k € N:
k!/ M(dy)/ y®k s (dxa, .. dx) F(y, X1, - xk)
Iy Xk
= / u(k)(dy, dxg, ..., Ox ) F(y +6x, + -+ &x, X1, ..., Xp). (2.11)
Iy x Xk

Proof. We prove this by induction. For = 1, (2.11)is just(2.10) Let us suppose that
(2.11)holds up tok — 1. As easily seen:

k: y®k s(dxq, ..., dxg) = p(dxg) @ (y — sxk)®k_l D (dxq, ..., dxg_1).

Then, by the induction hypothesis we have
k!/ u(dy)/ : y®k s(dxq, ..., dxp) F(y, x1, ..., Xg)
Iy Xk

— f u(dy) / Ydvo)(k — D! f (= )% D (dxs . digy)
x F(y, x1, ...
=/F M(dy)/ o(y, dxk)/ ®(k b D(dxg, ..., dxg—1) F(y+ex. X1, - .., Xk)
X

= / 1 (dy) f y&L (g, .., dag—n) / o(y, dxp) F(y + €x,, X1, - - -, Xk)
I’y

:f /’L(dy)/ U(% dxl)f U(V"'le,dxz)"'/ U(V+8x1+"'+5xk_1,dxk)
Iy X X X
X F(y + &y + -+ &y, X1, ..., Xp).

O

We will now give an isomorphic description of the spahﬁﬂ”. We first need some
preparations. Let

X =, ox) € XN x # xif i # )
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Notice that the sek* \ X* is of zerom®* measure. We have, for each, ..., x;) € X*:
N T X = A (ST X) = @ (T XM A A (T X0
Of[l,...,lkfd
l+-+l=n
(2.12)
For a forme : X¥ — A™(TX5) and(xy, ..., xx) € X*, we denote by (x1, ..., xt)i,...1,
the corresponding component®fxi, ..., xx) in the decompositiof2.12)

We introduce a seI/gym(X") of smooth formsw : X* — A™(TX*) which have compact
support and satisfy o&* the following assumptions:

() o(xa,...,x0)n,. 1, =0ifl; =0forsomej e {1,...,k}.
(i) w isinvariant under the action of the gro§p:

w(x1, ..., x) = 0(Xe(1), - - -, Xok)) fOreachs e Si (2.13)

(we identify the space¥,, ...

_ wXE = 1T X and Tiuy.ovgun X = @11 T)
through the natural isomorphism).

Xo (i)

Using(2.8)andLemma 2.1 we easily conclude that any mapping of the form:
Iy x XX s (y,x1, .., x0) = FPo(xg, ..., xx) € ATy X5, (2.14)

where F € FC*(D, I'x) andw € w4, (X¥) belongs to the space?(I'xy x X —
ATTXE); n®). Let L2 (I'y x XK — A"(TX); 1) denote the closed linear span of
all mappings of the fornf2.14)in L2(I'y x X* — A"(TX%); u®). Itis not hard to show
that the latter is just the space of al¥-square-integrable mappings of the form:

Iy x XK5 (yx1, .. x0) > WHLx1, ..., x5) € ’]I‘gi .... Xk}Xk

such that, fopu®-a.e.(y, x1, ..., xx) € I'y x Xk:

W(y, X1, ...,xk) = W()/, Xo(1)s ...,xg(k)), [OS Sk.

XFi= @ (T XM A A (T XN (2.15)

1<h,...k=d
l1+-+lk=n

(Notice thatthe spadégl“ X*isindeed independent of the order of the paints . ., x;.)

Xk}

Remark 2.2. Evidently:

L (x x X* > AMTX); 1) = L2 [ Ty — ([ L200,, ymX™ |+
yelx

where the latter space was definediction 1(see formulagl.2) and (1.3)



268 S. Albeverio et al./ Journal of Geometry and Physics 47 (2003) 259-302
By virtue of (2.4) and (2.15)we have
(n) k
/\n(TyFX) @k 1 @{xl ,,,,, xptCy T{Zl ’’’’’ xk}X . (2-16)

ForW e I'y — A"(TTx), we denote by (y) € &y, xk}cy’ﬂ‘(’” }Xk the correspond-

.....

ing component oW(y) € A*(T, I'x) in the decompositio(?. 16) Thus for{x1,...,x} C
v, Wr(v, x1, ..., x¢) is equal to the projection d¥(y) onto the subspadﬁg’ci,”w}xk.

Proposition 2.3. The spaceLfLQ" is unitarily isomorphic to the space

@L (I'y x X¥ — AMTX; 1 ®), (2.17)

where the corresponding isomorphighis defined by the formula

LW, x1, .. x0) = (D TYV2Wi(ytex+ - Fego X1, 1), k=1,...,n.
(2.18)

Here I} W := (I"W); is thek-th component of" W in the decompositio(2.17)

Proof. A direct calculation shows that

e y®k D (dxq, ..., dxg).

MW7, 1= Z / Wiy, x1. ... xk)nw) o

(2.19)

Therefore, byjremma 2.1 we have for anW e F$2":

fr IWO 207, ) ()

_ Z/ Wi (y + xy + -+ 0 X1, - - xk)”'[[‘(”) "
)(XX
x u®(dy, dxy, ..., dxp).

Hence,lI" is an isometry of the spadeﬁ[)" into the spacé2.17) Next, the image of each
mapping(2.14)under(1™)~1 is given by

Wi( ) 0. 7k, (2.20)
XLy ey X]) i= .
AV AL UDY2Ey — g, — - — e )0t ... 1), [ =k

and evidently belongs t&$2". Therefore " is “onto”. O

In what follows, we will denote byD£2" the linear span of the forms defined {8:20)
withk = 1, ..., n. As we already noticed in the proof Bfoposition 2.3D£2" is a subset
of 72" and is dense i.% 2"
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3. Laplace operatorson differential formsover configuration spaces

In this section, we introduce differential operators associated with the mgasuré&’y
which act in the space of square-integrable forms. These operators generalize the notions
of Bochner and deRham Laplacians on finite-dimensional manifolds. But first, we consider
the Dirichlet operator in the spad&(I'y; ).

3.1. Dirichlet operator on functions

For eachy € I'x, consider the triple:
T,oI'x D T,I'x D Tyolx.

Here, T, 0I'x consists of all finite sequences frdfI'y, andT),..'x := (T),0l'x)" is the
dual space, which consists of all sequentég) = (V(y, x))xe,, WhereV(y, x) e T X.
The pairing between ary(y) € T, 'x anduv(y) € T,,0l 'x with respect to the zero space
T, I'x is given by

(V), vy = Y (V2 %), 03, 1)
X€y
(the series is, in fact, finite). From now on, under a vector field éyewe will understand
mappings of the forny > y = V(y) € Ty, o0 I'x.
We will suppose that, for @ m-a.e.(y, x) € I'x x X, p(y, x) > 0 and foru-a.e.y € Iy,
the functionp(y, -) is weakly differentiable ork. We set

VEp(y, x)
oy, x)

(Bs(y, -) is called the logarithmic derivative of the measutg, -)).
The logarithmic derivative of the measyrés set to be the-a.e. defined vector field on
I'x given by

Bo(y, x) 1= , np@m-ae (y,x)elyxy xX

vy Bu(y) = (Bu(Vs XDxey € Tyoolx,  Bu(y,x) i= Bo(y — &x, X).

We define a bilinear forrg,, on the spacé.2(I'y; 1) by setting

£.(FV, F@) = / (VT FD (), VT E@ (), u(dy), (3.1)
I'x

whereFD, F@ e D(,) = FCF(D, I'y). By (2.3) and (2.8)and[40, Theorem 2.4]
(Eu, FCP(D, I'y)) is a pre-Dirichlet form.

Theorem 3.1. Suppose thafor any A € O¢(X):
2

/ DByl | m(dy) < oo. (3.2)
I'x

XEYA
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Then for any F, F® e FC(D, I'y), we have
£, (FV, F?) = f (Hu FOY () FO () u(d). (33)
I'x

whereH , is the operator in the spack?(I'y; w) with domainFCp°(D, I'x) given by

HuF)(y) == —ATF) — (VT F(p), Bu(¥)y,  F € FCX(D, I'y). (3.4)
Here
ATF(y) =) AYF(), AYFy) = AYFu(y, ), (3.5)
Xey

whereAX denotes the Laplacian oki corresponding to the volume measure

Corollary 3.2. (£,, FC;°(D, I'x)) is closable onL2(I'x; w). Its closure denoted by
(&, D(EL)), is associated with a positive definite self-adjoint operatbe Friedrichs
extension oH,,, which we also denote by,,.

Remark 3.3. In case of a Ruelle measure, a theorem onltheenerator of the bilinear
form (3.1)was proved iff10]. A theorem on the closability of the for(8.1)in the case of a
Gibbs measure on a manifaliwas proved if20] and in the general case obg,-measure
in [40] (see alsd39]).

Proof of Theorem 3.1. First, we note that, for each € FC;°(D, I'x) and eacly € I,
the functionf(x) := F(y + &,) — F(y) belongs taD and V¥ f(x) = VX F(y + &y).

LetnowF®, F@ e FC(D, I'y) and letA € O¢(X) be such that there exits a compact
A’ C A satisfyingF D (y) = FO(y,),i = 1,2, forally e I'y. Then, by(2.10)

f VT ED (), T FO (), (dy)
I'x
= / 1 (dy) / m(d) oy, x)(VEFD (y + e0), VEFO(y + e0)s
Iy A

=— /F 1 (dy) /A m(dx)p(y, ) (AXFO (y + 60) + (VEFD(y + £2), Bo (v, 1))
x FO(y +ey)

=- /F wu(dy) D (AYFP @)+ (VEFD (), Bu(y, )0 FP ()

XEYA

= / H, FOY)FP(p).
I

As easily seen, conditiof8.2) guarantees the inclusidt, FY e L2(I"; w). O
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3.2. Bochner Laplacian on forms
Let us consider the bilinear forﬁ‘ﬁ,n defined by

&, wd w@) = /F (VIWP ), VWO D)1, ry@anr, r n(dy). (3.6)
X

whereW® W@ e D} ) := D2". It follows from the definition ofD$2" that, for each
W e D2", there existg € D, ¢ > 0, such that

IV WG, ryanncr, ) < (0o )" forally e I'x 3.7)

and therefore, by2.8), the function under the sign of integral {B.6) is integrable with
respect tqu.
The following lemma shows that the bilinear fo(ﬁﬁ’n, D" is well defined oL 22",

Lemma3.4. We have® (W@, w®@) = oforall wh, W@ e D" such thaw® = 0
p-a.e

Proof. Let W € D2" andW = 0 u-a.e. Forxg € X andR > 0, let
B(xo, R) '= {x € Xl|d(x0, x) < R},

whered(-, -) denotes the Riemannian distanceXnThen

0= [ pndy YA W) an (T, rx)
I'x B(xo,R)

= / p(dy) m(dx) p(y, ) |W(y + el an(t, ., Iy)-
I’y B(xo,R)
SinceR was arbitrary, we therefore have

W +edllan@,ery) =0, p@®m-ae (y,x) € I'x x X.

For a fixedy € I'x, the functionX \ y > x = [[W(y + ex) | an(1,,., ) IS continuous, and
therefore foru-a.e.y € I'y, W(y + &) =00onX\ y. Hence

E8 (W, W) = /F 11(dy) fx VA IVEWWING, xorn(r, ry)
X

= /;_ wu(dy) [X m(dx) p(y, x)||V§W()/ + Ex)”%(x)@/\nﬂngrx) =0.
X
From here the lemma follows by the Schwarz inequality. O

Theorem 3.5. Suppose that
2+e
VA€O(X)Ie>0: / > IBu(. 0l n(dy) < oo. (3.8)
X

XEYA



272 S. Albeverio et al./ Journal of Geometry and Physics 47 (2003) 259-302

Then foranyw®, w®@ ¢ D", we have
&8 (W, we) = fr (HB WD), WD (), iy ().
X

WhereHE’n is the operator in the spacbi.(z" with domainD$2" given by

HE ,W() = —AT W) — (VI W), Bu(»),. W e D2". (3.9)
Here
ATW(y) =) AYW(), (3.10)
Xey

WhereAf is the Bochner Laplacian of the bundié (7, I'x) > y € O, with the volume
measuren.

Proof. We first note that, for any € D", the formH,BMW defined by(3.9) and (3.10)
belongs toL.2 2". Indeed, as easily seen W € 72", and henceA” W € L2 2". Next,

choose anyl € O¢(X) such that there exists a compattC A satisfyingW(y) = W(y4/)
forall y € I'x. Then:
fF LYW, Bu)y 120, iy )
X

2

= fr D AVEW), Bu(y. ) 1(dy)
X l[xeya /\"(TVFX)
2
5/ > IVEWO) I xeonn @, ro 1 Bu (.0l | w(dy). (3.11)
Ix XEYA

As easily seen, there existse Co(X), ¢ > 0, such that
IVEWIE xorn(r, ) < (0 7)" forally e Iy, xey. (3.12)
Now, by using(2.8), (3.8), (3.11) and (3.12and the Schwarz inequality, we conclude that

[ 9TV B B,y @) < oo (3.13)

Next, we will need the following lemma, whose proof follows directly from the construction
of the forms fromD2".

Lemma 3.6. For each fixedW € D" andy € I'x, the mapping
X\y3x> o) =Wy +ex) € N"(Tyie, Ix) = N'(Ty I'x @ T X)
(uniquely extends to a smooth form

X3 x> 0X) e N(T, Iy ® T X),
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andV¥» = 00onA° := X \ A, whereA C X is compact and such that(y') = W(y/,)
forall ' € I'.

Let W, w®@ e D" and letA e O¢(X) be such that there exits a compattc A

satisfyingW ¥ (y) = W(yu),i = 1,2, for ally € I'y. Then, by virtue of(2.10) and
(3.13) andLemma 3.6we get, analogously to the proof dheorem 3.1

gﬁyn (W(l) , W(Z))

- / u(dy) / HANVEWD (), VWD () 1. xa 1)
I'x A

= / 1(dy) / m(dx) o, ) VEWD (y + 6), VEWP (y + e 1 xom (T 1)
Iy A

=- /rx n(dy) /A m(d0)p(y, DAZWD (y + e, WOy + ) (1,10
+ (VWD + 80, B (1 00, WOy + £) w14, 0]
=- /F ) fA YA (A WD ), WO ) o, 1)
+((VEWD ), Bu(r, ), WO W) o, 1]
= /F X<H,5‘,nw<1><y>, W@ ) an e, o 11(dy).
Corollary3.7. (€8 ,, D2")is closable on.2 2" Its closure(£%

with a positive definiteself-adjoint operatorthe Friedrichs extension df
also denote byA? .

D(E8 ) is associated

B .
.y Which we

We define&> D(S,Ej,n)) as the image of the bilinear fore; . D(E3 ,)) under the

w.n>
unitary 1.
Proposition 3.8. LetW® W@ ¢ "(D2"). Then
B 1 2
£, VP W)

n

- Z/F y w®(dy, dxa, ..., dxg)
k=1v1xX%

<UVIWP @, x1, - x), VWP (, x, . x)

TJ/FX®T$;_,...‘JC/()X1(
k
+ (V(_);l’“"xk)w(l)()& X1, - .n, xk)7
k
vX WA, x1, ..., . . 3.14
(X1,esXk) (v, x1 xk)>T(X1---»J/\V)Xk®T§x)1 WWWWW xk}Xk] ( )
Here for a fixed(x1, ..., xz) € XX, VVF denotes the gradient of a mapping framinto

T(")

o Xk}X" defined foru-a.e.y € I'y similar to the gradient of a function of.
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Proof. Let WD, w®@ e D" and letW? := ["W® i =1, 2. Then, byLemma 2.1
=B @ W@
Epn WD WD)

=&,V W) = [ un Y VEWO ). WD ()1 xe e o
I'y

xey

:Z/F ,u(dy)/Xk @k (dxq, ..., dxg)
k=1""1X

1 2
X D AVEW s x, VWS (xt,  30) g
A X1

Xk
xey ~ k]
n
= Z/ 1 ©(dy, dxi, . ..., dxy)
k=1 Ix Xk
X (VWD x1, o x), VWP (131, X0) ggr o
~x X1, xp )
xeyU{x1,....xx}
which is equal to the right hand side .14) O

We will now applyProposition 3.80 prove the vanishing of square-integrable Bochner-
harmonic forms.

Theorem 3.9. Let the conditions ofheorem 3.%e satisfiedlet
o®(y, X"y =00 foru-aeyerly keN (3.15)

and let one of the two following conditions hold

() For u-a.e.y € I'x, p(y, -) is continuous and positive axi.
(i) d > 2and foru-a.e.y € I'x, p(y, -) is continuous and positive a¥ \ y.

Then for eachn € N, KerHB = {0}.

w,n
Proof. We will prove the theorem in the case of (ii), the case (i) being completely similar
and simpler.

First, we note that we can suppose that, foyadl I'x, p(y, -) is continuous and positive

on X \ y. It suffices to show thaf® (W) =0, W € D(£} ) = W = 0, or equivalently,

Ei,l()/\/) =0,We D(EE’H) = W = 0. Here and below, for a bilinear forii we set
E(W) = E(W, W) for W € D(E).
Let us consider the following bilinear form on the Hilbert sp24.7)

Uy WD WD) =3 U WD W),
k=1
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.....

k
U s VD, W) = / Oy dry, o dvo(VE WP x,

W(z)()/, X1y ne, X))

(X1, Xk)
wO W@ e moem.
From the existence of the generatoiiff defined on/” (D£2"), it follows thati4, is clos-
able and lets,, D(U,)) denote its closure. BfProposition 3-8D(55’,,) c DU,) and

Eﬁ,n(W) > U, W) forall W e D(E’E,n). Furthermore, it follows from the definition
of U, that DU,) = ®}_DUk.n) andU, = > ;_, Urn, Where for eactk = 1,....n
Ui.n, DUr»)) is a closed form orL2 (I'y x X% — A"(TX); u®) =: H ,. Hence, it
suffices to show thadt ,(V) = 0, W e DU,) => W =0.

ForW e I"(D2") N Hy, =: $2k,,, we define

k
SOV, x1. - x) = IVE O Wxs . Lxl?

(here and below we omit the notation of the space in the norm if this space is clear from the
context). LefW ™} c 2, and letW™ — Wasn — oo in the norm

I D@, = (- 13, + U (DY
Using the inequality
(SOVIHVZ — S THZ < SV — W),

we conclude thatS(OW ™)} is a Cauchy sequence in the normIdf(I'y x X*; u®). Let
S(W) denote its limit. Then, using the definition pf*, we have

.....

Ur,n (W)= /F p(dy) /X m(dxy) - m(du) p® (v 21, ) SON (a1 - x0),
! (3.16)

where

PN (v x1s ) 1= p( XD + Exga X2) - P+ By o F Exg g X0
Suppose now that , (W) = 0. Then, by (ii), it follows from(3.16)that, foru-a.e.y € I'x:

SW(y,) =0 m®*-ae onxk. (3.17)

Let us fixy e I'y such tha(3.17)holds and let? be an open ball ik* such that

OcC X, :=Xnx\p (3.18)
Sincep® (y, -) is positive and continuous af:

0<c1<pP(y,)<c2<o00 0onO

and sal.”-convergence o with respect to the measusé” (y, dx1, . . ., dxy) is equivalent
to the same convergence with respect to the measfife
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Let W21(O) denote the Sobolev space consisting of all functiprs L2(O; m®k) which
are weakly differentiable and whose weak gradiéft f € L2(O — TO; m®¥).

Lemma 3.10. We have|W(y, -)Il € W3(O) and VX [W(y, -)|| = 0 m®*-a.e. onO.

Proof. Let us consider the classical pre-Dirichlet form bf(O; m®k):

x m(dxq) - - - m(dxy),

wheref®@ | @ e D& := cL(O). As well known, this pre-Dirichlet form is closable and
let (€, D(&)) denote its closure. Them(&) = Wzl(O) and

£GP fP) = / SUD. fO) 0 m(dx) - m(dv). [P, P e DE),
o
where
S(f(l), f(z))(_xl’ ey _Xk) = <Vka(l) (xlv e .xk), Vka(z)(_xl, ey xk))T(xl,.u.xk)Xk’

the gradieanXk being understood in the weak sense.
Hence, taking notice dB.17) to prove this lemma, it suffices to show that the following
claim is true: letw : © — A"(TO) be a limit of a sequencv, } of smoothn-forms onO

with respect to the norr| - ||22(0_)N1(TO);m®k) +G()Y2, where

Gu) = /O IV uCer, . x) [12m(dxy) - - m(dxg)

for a smooth formu. Then,||w| € D(€) and

S(lwl) < S(w) m®*-ae onO. (3.19)

Here,S(w)(x1, ..., xx) is constructed analogously to tBeW)(y, x1, .. ., xx) above.

The proof of this claim is essentially the same as the proof of the fact that, forfeach
D), |f| € D) andS(| f]) < S(f) m®*-a.e., which is why we limit ourselves to only
outline it. So, first one shows by approximation that, for each fixedO, /{w, ) + € €
D(€), and moreover, for any fixed ¢ > O:

S (w, ®) + € — /{0, w) + € )(x1, ..., xz)
2

X1, ..., x) o, ..., x0)
<Sw)(x1,...,x —
=S | e~ Ve T e
m®-ae. (xq,...,xx) € O. (3.20)
Second, one setg | 0 and shows usinB.20)that{./{(w, w) + €,} is a Cauchy sequence
with respect to the norrtj - ||i2(0m®k) +&(-)Y/2. The estimaté3.19)then trivially follows.

Thus, the lemma is proved. O
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By Lemma 3.10it follows that|W(y, -)|| = const m®*-a.e. on®. Sinced > 2, the set
X, defined in(3.18)is open and connected, and therefore it can be covered by a countable
number of open ball§0, } satisfyingO, C Ay ,. Therefore|W(y, -)|| = const m®*-a.e.
on Xy ,, and hence:®-a.e. onx*. Finally, by(3.15) | W|| = 0 ® m®*-a.e. onl’y x X,
Thus, the theorem is proved.

3.3. deRham Laplacian on forms

Let £2" denote the subset of2" consisting of all formsW e F2" such that all
derivatives ofW are polynomially bounded, i.e., for eakhe N there existy € D, ¢ > 0,
and! € N (depending orW) such that

v O W) !

2
(Tyfx)®k®/\"(Tny) S <(P, J/) fOl’ a” )/ S FX (321)

and additionally, for each fixed € I'y andr € N, the mapping
XAP' NX" 3 (1 x) > W+ + - Fey,)
eN'(TIx®TyX® - ® T X)
extends to a smooth form
X' 3, ..x) o0, ..., x) e N"(TITx ST XD @ T, X)

(Notice that the locality of a form, together with the above condition of extension, will
automatically imply the infinitely differentiability of the form.)
As easily seerD£2" is a subset of 2", and so we get the following chain of inclusions

D" C E2" C F2".

We define linear operators

d,: EQ" — EQ"Y, neZy, £2°:= FCP(D, I'x) (3.22)
by

W) (P) = (n + DY2AS, 1(VI W), (3.23)
where

AS, 11 (T, )2 — A1, Iy) (3.24)

is the antisymmetrization operator. (We notice that the polynomial boundedness of the form
d, W and its derivatives follows from the corresponding boundedneSd éF and the fact
that the norm of the operat@.24)for eachy € I'x is equal to 1.)

Let us now consided, as an operator acting from the spacg” into L2 2"+1. (We
remark that, by the proof diemma 3.4d, W = 0 u-a.e. forW e ££2" such thatW = 0
pn-a.e.) We denote bg’ the adjoint operator ad, .

Proposition 3.11. Let(3.8)hold. Thend? is a densely defined operator frolDﬁL.Q’”rl into
L2 2" with domain containings2" 1.
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Proof. It follows from (3.23)and the definition o¥!" that, for anyW e £2" andy € I'y:

W) =Y ([ M), (3.25)
xey
where
(e W) = (0 + DY2AS, 1 1(VEW (D). (3.26)

Lety € I'y andx € y be fixed. LetC*(0,, . — A" (T, I'x)) denote the space of all smooth
sections of the Hilbert bundi@.6). We define an operator

d¥, 1 C®(0yx — N(TyTx)) = C®(Oy — AT, Iy)),
whose action, in local coordinates on the manifglds given by
d¥, e hi A Ay = 0+ DY2VEp() AhL A - A By, (3.27)

e C®Oyx = R), h e Ty X, xx €y, k=1,...,n. Itfollows from (3.26) and (3.27)
that

(A W) () = d, Wa(y, ). (3.28)

Next, let2(O,,, — A" (T, I'x)) denote the space of all sections of the Hilbert bui(alé).
We define an operator

8X Coo(oy,x - An+1(T)/FX)) - Q(OV,X g /\”(TyFX))

Xx,n

setting

8%, @RI A -+ A hut1
n+1

==+ DY (=D e w[(VFOM), hidx + 9N (Bu(y, ¥, hi)xlia
i=1
Ao AVRA - A By, (3.29)

wherep € C®(0,, — R), hi e Ty X,xi€y,i=1,....n+1

1 x=yx,
0 otherwise

Ex,xj =

andv h; denotes the absencelgf We now set fol e £t

@Bxn(y) = 8;)5(,” Wi (y, x) (3.30)
and
W (@) = EeaW)(» (3.31)
XEY

(Notice that the sum on the right hand sidg®f31)is actually finite.)
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Let us show that, for anyv e £2"*1, we haves,W € L22", whereL220 =

L2(I'x; w). We choose anyt € O¢(X) such thatW(y) = W(y4) for some compact
A’ C A. Then, by(3.31)

wu(dy)
A1(T, Tx)

2
E/F Z ”(ax,nW)(V)“/\”(Tny)) p(dy).

/F 12 WY (7, (@) = / > GeaM )
X

Ix XEYA

XEYA

(3.32)

Using (3.21), (3.29) and (3.30)t is not hard to show that there existe Co(X), ¢ > 0,
andk € N (independent of andx) such that

1@ WYD () < (0, V)" + (1 + DY B DA WD |, - (3:33)
Analogously to the proof of3.13) we get from(2.7), (2.8), (3.8), (3.32) and (3.3®)at
8, W eL20".

Let WD, W@ ¢ £02" and letA € Oc(X) be such that, for some compadt c A

WD) = WDy, i =1,2,forally € I'y. Then, by(2.10), (3.25), (3.27) and (3.28)
we get using the notations &kection 2

/F (da WP 0, WO W) pnsar, i (dy)
X
= f p(dy) / (@) {(den W @), WE @) ansar, 1)
Iy A

= fr 1 (dy) /A oy, A (A W) (v + 0, WOy + ) vz, 1)

=/F u(dy)/Acr(y,dx)Z D (e Wy + e, x1, 3w,

k=1 {x1,...,x; }CyU{x}

2
W (v + e xa. V) ATy, )

= /F pdy Y /A o (v, ) (A Wiy + 0, %, 51, ., K1),
X

k=1{x1,....xg-1}Cy

2
W/E )(y + Ex, X, X1, ..., xk_1)>/\"+1(Ty+gXFX)' (334)

It follows from the definition of€§2" that, for a fixedy € I'xy and{xy, ..., xx—1} C v,
W,EZ)()/, X1, ..., Xk—1) €xtends to a smooth form
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Xsxm Wl xx...a-0e @& (TXMATLXN2A--
1<l1,...Ix<d

l1+-+=n
ATy )™M C (T X & Ty X & Ty, X).
SinceW® (y + ¢,) also extends to a smooth form &f we can carry out an integration

by parts in thex variable in(3.34) Thus, by usind3.29)—(3.31) and (2.10We continue
(3.34)as follows:

- D>

k=1{x1,....x-1}Cy

/ oy, (WD (y +6,), 8 . ,,W(Z)(J/ + Exy X, X1y ooy Xk— 1)) AY(Tyye, Tx)
A
= /F u(dy) /A oy ) (WD (y + £0), 85, W2 (v + ex. )) an(140, 1)
X
= /F u(dy) /A o(y, AW (y + e0), Gxan W)y + eI ar (140, )
X
= / u(dy) / y(dx) (WD @), Gxn W)W ar(1, 1)
Iy A
- / WD), W D)D) 1, 110,
I'x
Hence 72"™! c D(d?, ,) andd; — £2"T =34, ,. O
Corollary 3.12. The operatod, : L% 2" — L22"t!is closable

We denote byd, the closure ofl,. The spaceZ” := Kerd, is then a closed subspace
of L202". Let B" denote the closure ih2 2" of the subspace Im, 1 (of course,B" =the
closure of Imd,,_1).

We obviously havel,,d,,_1 = 0, which implies

Imd,_1 C Kerd, C Z".
HenceB"” C Z" and
d,d,_1=0. (3.35)
Thus, we have the infinite complex
Gren B ettt
and the associated Hilbert complex

a”, a,, an
S 2on 3 p2ont it (3.36)
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We set in a standard way
n __ n n
HM_Z'/B , neN.

Forn € N, we define a bilinear forrﬁ’ff,n on Lﬁgn by

R, WD W) = fr [da WP ), da WO D) v, 1y
X
+(dy_ W), & WP 0) we1r, I (@), (3.37)

whereW® W@ e DR ) := D(d,) N D(d:_,). This form is evidently closed, and
let (Hff,n, D(Hff,n)) denote its generator. This operator will be called Hodge—deRham
Laplacian of the measure.

The following proposition reflects a quite standard fact in the theohfafohomologies.

Proposition 3.13. The natural isomorphism betwe@tf, and the orthogonal complement
of B" to Z" is the isomorphism of the Hilbert spaces
~ R
H), ~ KerH,, . (3.38)
Proof. Using[12, Proposition A.1]we conclude fronProposition 3.1and formula3.35)
that
L%2" =KerHR  @imd,_1 & Imd; (3.39)

(the weak Hodge—deRham decomposition). For the closed opdratar have the standard
decomposition

L%2" = Kerd, @ Imdj,
which together with(3.39)implies the result. O

We do not know a priori whether the domam(H,Fj,n) containsDs2", however the
following theorem gives a sufficient condition for this.

Theorem 3.14. Let us suppose that

(i) For u-a.e.y € I'x, p(y, x) > Oforall x € X\ y and the functiorp(y, -) is continuous
onX.
(i) For u-a.e.y € I'x, p(y, ) is two times differentiable oK \ y and VX p(y, -) extends
to a continuous form oix.
(i) For u ® m-a.e.(y,x) € I'x x X,y > VEp(y + ¢y, x) € T, X is differentiable on
X\ (yU{xhand

oy +&x,y)
X\(Uh sy DX gX o0 4 e x) e TX

ply + &y, %)

extends to a continuous mapping Bn
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(iv) (3.8)holds and furthermore

2+¢

VA€OX)3k>0:| [Y Y IViB.yollnxerx | wu(dy) < oc.
Tx \ yey xeya

(3.40)

Then D2" ¢ D(HY ) and

HR . = D" = d,_1d}_, + d}d,.

Proof. Since byProposition 3.1, D" ¢ £2"+1 ¢ D(d;), to prove the theorem we
have to show thad* ;D" C D(d,_1), i.e., for arbitraryW™®, w@ e D2, there exits
V € L22" such that

/F (i W), di_ WO D) an(r, ) i(dy)= /F (V). WO D) an(x, oy 1(@).
X X

(3.41)

We choose anyl € O¢(X) such that, for some compadt ¢ A, W (y) = WO (y,),
i=1, 2, forally e I'y. It follows from the proof ofProposition 3.1landLemma 2.1that

fr (di W), &t WP W) -1z ryy 1(dy)
X

= | D WP, 8, WO W) w10z, 1 (dy)

X x,yeya

- / u(dy) / o(y, dx)(8x.n W(l)()’ +&x), 8xn W(z)(y + 8x)>A”*1(Ty+sXFX)
I'y A

- f u(dy)/ o(y, dx)/ oy + &0, AV (S W (y + &5 + &),
Iy A A

Sy,,, W(z)(y + & + sy)>A”_1(Ty+sx+eyFX)' (342)

Due to conditions (i)—(iii), we can see that, fera.e.y € I'y andx € X \ y:

dx,n(sx,n W(l) (y+e&x) € An(T)/+8x)
and foru @ m-a.e.(y,x) € I'y x Xandy € X\ (y U {x}):

Ay ndxn W (v + ex + £y) € A (Tyse,re, ),
using formulaq3.27) and (3.28jor the definition ofd, ,,, x € X. Moreover, by virtue of
(i) and (i), the integration by parts yields, fora.e.y € I'y

/ 00 A0) Bn WO + £, 800 WO + £0) porcr, . 1)

A

= / O'()/, dx)<dx,n6x,n W(l)()/ + 8)(): W(Z) (7/ + Sx))/\”(Ty+gx I'x) (343)
A
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and analogously, using (i) and (iii), we get, for® m-a.e.(y, x) € I'x x X:
/ oy + 65, dy) B WV + 6+ ), 8,0 WO + 80+ ) w1z, o 1)
A ke

= / o(y + &x, d)’)<dy,n6x,n w® (y +ex + Sy)» W(Z)(V +éx + 8y)>A" (Tytextey IX)+
A )

(3.44)
Suppose that
2
/ D My n8en WO Dl an ) | m(dy) < o0 (3.45)
I'x X,yey
so that

V(y) ==Y dynbea WP () € AT, Iy)
x,yey

is well defined foru-a.a.y € I'x, and moreovelV < Li.Q”. Then, byLemma 2.1land
(3.43)—(3.45)we continug3.42)as follows:

- / 1(dy) / oy, dx) (A n W (v + 60, WO (v + e0) anry 1, 1)
I'y A

+/ M(d)/)/ o(y, dx)/ oy + 2, dy) (dy 182 s WO (y + 61 + ),
I'y A A

W(z)(V +eéex+ 8y)>A”(Ty+sx+6yFX)

- /F (VA WO ) oz, ry (), (3.46)
X
where
VA(V) = Z dy,nsx,nW(l)(y)‘ (347)
X, YEYA

SinceV(y) — V(y) asA — X for u-a.e.y € I'x, by the majorized convergence theorem,
we conclude fron{3.42), (3.46) and (3.4&hat

/F (di WP, di_ WP D) i, 1y ()
- fr V), W) s, rp ().

Thus, it remains to show th&B.45) does indeed hold. Lejx~e O¢(X) be such that, for
some compact’ ¢ A, W (y) = W (y,) forall y € I'x (A being now independent of
w®@). Sinced, , W (y) = 0 forall x € y;., we get
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2
/1: Z ”dy,nsx,nW(l)()/)”A”(TyFX)) M(dy)
X

X, YEY
2
<2 > Uy WEP Dl ancr,ryy | we(dy)
Ix X, Y€V
2
+2 / 3 Y 1y B WD i | () (3.48)
Ix \yeyze xeyy

Analogously ta(3.33), we conclude fron§3.27)—(3.30}he existence ap € Co(X), ¢ > 0,
andk € N (independent of, x, andy) such that

Idynbxn WDl aner, gy < (0. W A+ [Bu 0)le + 1V Bu (. )1, x07,%)
(3.49)
forx,y € y;,and
1dyn 80 WP ) ancr, ) < (0 YIVE B (v 0l 7, x0T, x (3.50)

fory e y;. andx € y;.
Thus, the finiteness of the right hand side(8f48) can easily be deduced fro(@.8),
(3.8), (3.40), (3.49) and (3.50and the Schwarz inequality. O

Corollary 3.15. Let the conditions ofheorem 3.14e satisfied. Thefior eachW € D"
andu-a.e.y € I'y

Z (Hax,ndy,n W(V)”/\”(TVFX) + ||dy,n6x,nW(V)”|A"(Tyfx)) <0 (351)

X,yey

and the action of the operatdaﬂfin can be represented in the form

HE,n W(y) = Z (‘sx,ndy,n + dy,nax,n)W(V)a u-aey e I'y.

X, Y€y

3.4. Weitzenbock formula

In this section, we will derive a Weitzenbdck type formula, which gives a relation between
the Bochner Laplaciahiﬁ’n and the deRham Laplaci&mff!n. In what follows, we will
suppose that the conditions Biieorem 3.14re satisfied.

For eachV(y) € T, I'x, y € I'x, we define an annihilation operator

ay (V) : ATy Tx) = A" (T, Iy)
and a creation operator

a(V(y) - A"NT, Ix) — ATy Tx)



S. Albeverio et al./ Journal of Geometry and Physics 47 (2003) 259-302 285

as follows:

an (V)W) = /n(V), Wa()y.  Wa(y) € A" (T, I'x),
ap (V) Wa—1(y) = VnV) A Wao1(y), Wao1(¥) € A" H(T, Ix)
(the pairing in the expressiofV(y), W, (y)), is carried out in the first “variable,” so that

a’(V(y)) becomes the adjoint af, (V(y))).
Now, for a fixedy € I'y, we define an operatdt, (y) in A" (T, I'x) as follows:

Ru(y) =Y R(x),  DRu(») = rg(T, ),

x€y

d
Ry (y, x) = Z R; jk1(x)ay (ei)an(ej)ay (ex)an(er).
i, jk,l=1

Here,{e.,'}j?:1 is a fixed orthonormal basis in the spdfeX considered as a subspace of
T, I'x, N§(T, I'x) consists of alW,, (y) € A" (T, I'x) having only afinite number of nonzero
coordinates in the direct sum expans{@ril6), andR;j is the curvature tensor ax.

Next, let A(y) € (Ty00lx)®2, SO thatA(y) = (A1, X, ¥))x.yey, WhereA(y, x, y) €
T,X® T, X. We realizeA(y) as alinear operator acting frofy oIy into 7,, . Iy by setting

Tyol'x 2 V(y) = (V(¥, X))xey = AWV(Y)

=D A5, V0 | € Toolx.
xXey
yey
If we additionally suppose that, for any € Oc(X):

2

Yo Do 1A x wlnxerx | < oo,

YEY \X€VA

then, as easily seem(y) is indeed an operator acting frof}, oI’y into 7),I'x. In the
latter case, we define a linear operatay)”™" in A"(T, I'x) with domainD(A(Y)"") =
No(Ty I'x) as follows:

AP =AY RL---®1+10ANRLI® - @1+ - +1® ---®1Q A®y).
We set
B, (1) = (B, (v, x. Mixyey € Tyool )% B, (yix,y) == V) Bu(y. x).

It follows from (3.40)that, foru-a.e.y € I'y:

2 2

DL 1B lnxerx | < | DD IB.(hx Mlinxerx | < oo

yey \x€ya YEY XEYA
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Therefore, the operatoB;L(y Mo ng(TyIx) — AN'Y(T, Tx) is well defined foru-a.e.
yelY.
Theorem 3.16. Let the conditions of heorem 3.14e satisfied. Thenve have orD£2":

HR W) =HE  + R.()W(») — B,(0""W(y). p-aeyeTly.
Proof. We fix anyW® e D", By Corollary 3.15 we have

HEa WP 0 =D Gunndin + dundn) WD @)

x€y

+ Z (au,x,ndy,n + dy,nau,x,n)w(l)(y)~ (3.52)
X, YEY, XFEY

By (2.10) and (3.51)we get for anyW @ e D"

/ <Z(6M,x,ndx,n + dendp ) W), w<2>(y)> p(dy)
x A(TyTx)

xey

= / Z <(5/L,x‘ndx,n + dx,n(su,x,n)w(l) », W(Z) (V)) M(d)/)
I'x

P AT, Tx)
= / M(d)/) / oy, dx)((‘su.,x,ndx,n + dx,n‘su,x,n)W(l) (¥ + &x),
Iy X

W@y + EX)) AN (Typen Tx)- (3.53)
By a slight modification of the proof of the Weitzenbéck formula on the manifol@ee,
e.g.[19]), we get for a fixed’ € I'y
/ U(Vv dx)((su,x,ndx,n + dx,n(su,x,n)W(l) (V + 8x)v W(Z)(V + 8x)>A”(Ty+£XFx)
X

= f o(y, A (= AXWD (y + &) — (VEWD (y + £2), Bo(r, 1))
X
+ Ry (Y + 60, YWD (y + 60) — (VEBo(r, ) WD (y + &),
WOy + e an(T 40, ) - (3.54)

We note that the function under the sign of integral on the right hand side of eq(3aith)
considered as a function gfandx, is integrable with respect to the measuf® (dy, dx).
Indeed, the integrability of the function

Fi(y, x) = (—Af WD (y + &)
—(VEWD(y + £, Bo o 0))xs WOy + ) an (40, 10

follows from the proof ofTheorem 3.5the integrability of the function

Fa(y, x) = —((V¥ B )M WD (v + 60), WO (y + e an(ry 1, 1)
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follows from the proof ofTheorem 3.14and the integrability of the function
F3(y. %) == (Ra(y + ex. WP (y + £0). WOy + ) a1y 1)
follows from the estimate
|F3(y, 0)| < n2d*RAIWD (v + ellant, o, ro IWP (7 + €0l an(z 1, 1o
where

Rai=__max supR;;k:(x)l,
i,k 0=1,...dye A

A € O¢(X) being such that, for some compatt ¢ A, WD (y) = WD (y,) for all

yelY.
Hence, by(2.10), (3.53) and (3.54andTheorem 3.5

/ <Z(6M,x,ndx,n + dendu ) W), W<2><y>> p(dy)
I'x
ATy Tx)

xey

= /F ) <HE,nW(”(y) + Y R )WP ()

x€y

— > (VB )W (), W<2>(y>> p(dy). (3.55)
xey A(T, Tx)
Next, using formulag3.27)—(3.30)we have

(S/L,x,ndy,n + dy,nsu,x,n)W(l) )
= —(V;(BM()/, x))A"W(l)(y), vely, x,yEy, x#y. (3.56)

Thus, by(3.52), (3.55) and (3.56yve get, foru-a.e.y € I'y:

HR WO ) =HE WP, 0 + RaIWP () = (VEBL (. x) " WD ()

xXey
- D (VB W)
X, YEY, XFEY
=HE W) + R.WWY ) — B, ()" WD (). O

4, Examples

In this section, we will discuss some measures on the configuration gRatmewhich
the above results are applicable.
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4.1. (Mixed) Poisson measures

Letr,, z > 0, denote the Poisson measure(dly, B(I'x)) with intensity measurem
This measure can be characterized by its Laplace transform

fr exp[( £ y)]r.(dy) = exp( /X (™ — 1>zm(dx>> , feD.

We refer to, e.g[9,53] for a detailed discussion of the construction of the Poisson measure
on the configuration space. The measuresatisfieg2.10)with o(y, dx) = zm(dx), which
is the so-called Mecke identify#3].
Every measurea, is concentrated on the subs&t € B(I'x) consisting of thosg € I'y
for which

lim lya,l _
n—oom(Ay)

)

where(A,);? ; is an extending sequence of sets fré(X) such thatd, — X asn — oo
(see[27,44).
Let 6 be a probability measure @f, co). A mixed Poisson measurg is defined by

oo
7o (+) 1=/0 0(dz)7(-).
Then, evidentlyry satisfieg2.10)with

oy, x) =zmdx) fory € E,.

Let us suppose that
o
/ 7"6(dz) < oo foralln e N.
0

Then, conditior§2.8)is fulfilled, and furthermore all the theoremsI¢ction 3are applicable
to the measurey.

Letus remark the following interesting fact. The Dirichletform on functiééis,, D(Ex,)),
is irreducible if and only ifry is a pure Poisson measure (see[10, Theorem 6.3] On
the other hand, bfheorem 3.9the Bochner bilinear form&?f, . D(ES. ), n € N, are
irreducible for all measuresy. In other words, fotry # 7, there exist square-integrable
nonconstant harmonic functions, but no square-integrable Bochner-harmonic forms.

4.2. Ruelle measures

In this subsection, we will discuss a class of Gibbs measures on the configuration space
overRY. So, letX := RY, d € N, and letl" := Izs. The volume measure onR? is now
the Lebesgue measure.

A pair potential is a measurable functign R? — R U {+o0} such thatp(—x) = ¢(x).
We will also suppose that(x) € R forx € R?\ {0}. ForA € O¢(R%), a conditional energy
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E‘f‘ : I' > R U {+o00} is defined by

Lpenicpboninaze® @ =¥ 130 ey i nazgel®(r = I < oo,

¢ .
E =
2 { +00 otherwise

Given A € O¢(R?), we define fory € I andA € B(I)
30 ) =10 D257 ]
< [ Latrae V) XPEL (a + yper)
where
Z5(y) = /r exp[—E% (yac + vl (dy).

A probability measures on (I; B(I)) is called a grand canonical Gibbs measure with
interaction potentiap if it satisfies the Dobrushin—Lanford—Ruelle equation

wI1y? = forall A € Oc(RY).

Let G(z, ¢) denote the set of all such probability measyres
It can be showrj26] that the unique grand canonical Gibbs measure corresponding to
the free casep = 0, is the Poisson measure.

We rewrite the conditional energ‘yﬁ in the following form

ES ) = E%(ya) + Wyalyao),
where the term
Dxeyaverac®@ =) 1Y icy s yepue|0G = < 00,

. (4.2
400 otherwise

Wyalyae) =

describes the interaction energy betweenand y .. Analogously, we definév(y’|y”)
wheny' Ny’ = @.

We suppose that the interaction potentals stable, i.e., the following condition is
satisfied:

(S) (Stability) There exist® > 0 such that, for anyt € O¢(R?) and for ally € I'y:
Ef () = —Blyl.

(Notice that the stability condition automatically implies that the potegtimsemi-bounded
from below.)
Then, anyu € G(z, ¢) satisfies identity2.10)with

p(y, x) = zexpl-W({x}|p)]. (4.2)

Infact, this property uniquely characterizes a Gibbs measure in the sense that any probability
measurew on (I; B(I) belongs tdi(z, ¢) if and only if u satisfieg2.10)with p(y, x) given
by (4.2) (cf. [45], see alsd32]).
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Let us now describe a class of Gibbs measures which appears in classical statistical
mechanics of continuous systefdd]. For everyr = (+1, ..., r%) € Z¢, we define a cube
O, ::{xeRd|ri—%§xi <ri+%}.

These cubes form a partition Bf. For anyy € I, we sety, = yg,,r € Z¢. ForN € N
let Ay be the cube with side lengti\2— 1, centered at the origin iR?. A is then a union
of (2N — 1)¢ unit cubes of the fornp,..

We formulate the following conditions on the interaction.

(SS) (Superstability) There exidt> 0, B > 0 such that ify € I'4,, for someN, then
ES ) = Y [Alnl? = Blwll.
reZd

This condition is evidently stronger than (S).
(LR) (Lower regularity) There exists a decreasing positive funatiotN — R such that

> alrl) < oo

reZd
and for anyA’, A” which are finite unions of cube@, and disjoint, withy’ € I'y/,
)/// e Iyr:

W'Yy == > allr =" DIyl vl

v eld

Here,| - | denotes the maximum norm @&f.
() (Integrability) We have

/d 11— e @) m(dx) < +o0.
R

A probability measurew on (I; B(I) is called tempered ife is supported by

o]

Soo 1= Us”,

n=1

where

Sy =1{yelVYNeN Z yel? < n?lAy N 29

reAynz4

By G'(z, ¢) C G(z, ¢) we denote the set of all tempered grand canonical Gibbs measures
(Ruelle measures for short). Due[fd] the setG'(z, ¢) is nonempty for alt > 0 and any
potentialg satisfying conditions (SS), (LR), and (1).

Let us now recall the so-called Ruelle bound (61L]).
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Theorem 4.1. Let ¢ be a pair potential satisfying condition$S), (LR),and (I), and

let u € G'(z,¢), z > 0. Then for anyn € N and any measurable symmetric function
f®: (RY" — [0, 0], we have

/ S M@ xudy)
Iy

X1yeens Xn}CV

1
= ) £ x)k P (e x)m(drn) - m(dxy),
. ( )n

wherek,({’) is a nonnegative measurable symmetric functiod®h”, called thenth corre-
lation function of the measupe, and this function satisfies the following estimate

V0rnox) € R K (oL x) < € (4.3)

where¢ > 0 is independent of.

The above theorem particularly implies that any Ruelle megswsatisfieq2.8).
We suppose:

(S1) There exists > 0 such that
/ | (x)|m(dx) < oo,
B(r)¢
whereB(r) denotes the open ball iR? of radiusr centered at the origin.

Lemma4.2. Let(SS), (LR), (I),and(S1)hold. Then

Z lp(x —y)| < oo forp@m-ae (y,x) e I' x R.
yey

Moreovet for u @ m-a.e.(y,x) € I' x R4
p(y.x) =zexp| =Y ¢x—y) | > 0.
YeY
Proof. Itis enough to show that, for angy € O¢(R)

> lgp—yl<oco forp@m-ae (yx) el x A, (4.4)
YEY (AT

whereA” ;= {y e R? : d(y, A) < r}, d(y, A) denoting the distance fromto A.
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By Theorem 4.Jand (S1):

d d —
[ nn [ me@n 3 1o -y

YEY(ANE

- / m(d) f u(dy) / YY) (= 1) Leare(y)
A r R4

- / m(dy / m@ED (3) B0 — MILeare ()
A R4

ss/ m(dx)/ m(dy|x — |
A (AN)e

< Em(A) / B()Im(dy) < oo,

B(r)¢

which implies(4.4). The second conclusion of the lemma now trivially follows frénl)
and (4.2) O
We also suppose that the two following conditions are satisfied (compar¢l®ijh

(D) (Differentiability) e=¢ is weakly differentiable ofR?, ¢ is weakly differentiable on
R4\ {0}, and the weak gradieRte (which is a locallym-integrable function oi?\ {0})
considered as am-a.e. defined function oR? satisfies

Vo € LYR?, € %m) N L3RY, e %m). (4.5)

Remark 4.3. It follows from (D) that

Ve?=_-vVpe? m-ae onR’.

(S2) There exist® > 0 such that

f [Vo(x)| m(dx) < oo.
B(R)¢

Proposition 4.4. Let (SS), (LR), (1), (D), (S1)and (S2) hold. Thenany u € G'(z, ¢),
z > 0, satisfies the conditions dheorem 3.5and

Bu(p.x)=— Y V¢(x—y), xeypu-aeyely. (4.6)
yey\ix}

Proof. We first prove that, fopi-a.e.y € I'y p(y, -) is weakly differentiable ofR?. We fix
any f € D andwv, a smooth vector field oR? with compact support, and let € O¢(R%)
be such that the supports of bottandv are contained iml. Let (Ay)3_; be the sequence
of subsets oR? as in (SS). LetV € N be so big that® ¢ Ay. Then, usinqRemark 4.3
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we get

fA exp{— > ¢<x—y)} (V f(x), v(x))zm(dx)

\EVAN

= fA exp| — Y pa—y) | f) ( 3 <V¢<x—y>,v(x>>—diw(x>) zm(d)

YEYAN YEYAN

= fA exp| — Y G-y | f) ( 3 (qu(x—y),v(x))—din(x)) zm(dy)

YEYAN YEV AR

+ /A exp[— 3 ¢(x—y)} f(x)( S (Vo). v<x>>) zm(d).

YEVAy YEY pp\AR

4.7)

We know from[52, Lemma 5.1, Proposition 5.2 and its protfat, for eachy € S, there
exists a constar(y) > 0 such that

VN e N,Vx e A:exp[-W({x}lyay)] < C(y). (4.8)

Moreover, analogously to the proof ¢f.4), we conclude from (S2) that

Y IVe(x — y)zmdy) < oo forp-aey e Ik. (4.9)

A er(AR)C

Now, by virtue ofLemma 4.2 (4.5), (4.7)—(4.9)and the majorized convergence theorem,
we get

Yey

/ exp{ D b — y)} (V f(x), v(x))zm(dx)
= /A exp |:— D bl y):| J) (Z (Vo(x — y), v(x)) —div v(X)) zm(dx).

yey Yey

Therefore, foru-a.e.y € I', p(y, -) is weakly differentiable oiR¢ and

Bo(yiX) ==Y Vo(x — ),

Yey

so thatB,, is given by(4.6).
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Finally, let us show that, for ang € Oc(R9):

/F(Z > |V¢(x_y)|)sﬂ(dy)

X€ya yey\{x}

3
1
=z /F ( 3 |V¢<x—y>|<1A<x>+1A(y)>) u(dy) < oo, (4.10)

8 {x.ylcy

which implies(3.8) with ¢ = 1.

The proof of(4.10)is essentially analogous to thatj@d, Lemma 4.1])so we only sketch
it. By using[32, Proposition 3.11andTheorem 4.1we get, for any nonnegative symmetric
functionp@ (x, y) on (R9)2:

3
/ ( Y. P y)) p(dy)
r

{x.ylcy

=c1 /Rd ] 0@ (x1, x2)9® (x3. x4)9? (x5, x6)kQ (x1. . .. xg)m (dx1) - - - m(clxe)
R<)
+c2 /Rd ] 0@ (x1, x2)9@ (x1. x3)9? (x4, x5)k (x1. .. . x5)m (dx1) - - - m(clxs)
R<)

+ /(Rd)4(c3(p(2) (x1, x2)%0@ (x3, xa) + c49® (x1, x2)9@ (x2, x3)9® (x3, x4)
+es59'? (x1, x2)9® (x1, x3)9'? (1, xa)k(Y (x1, . . ., xa)m(dx1) - - - m(dxg)
e -/(Rd)’a’((p(Z) (x1, x2)%9® (x1, x3) + c79@ (x1, x2)9? (31, x3)9'? (x2, x3))
xk (x1, x2, x3)m (dx1)m (dx2)m (dx3)

+cg / 0@ (x1, x2)%kP (x1, x2)m (dxp)m (dxa), (4.11)
(R9)?

wherecy, ..., cg > 0. We recall also the estimate (€10, formula (4.29))
V(rn.x) € R K (x1, LX) < Ry exp {— > ¢(x,-—x.,'):| , (4.12)

1<i<j<n

wheren € NandR, > 0. Finally, one prove§4.10)by using(4.5), (4.11) and (4.12pand
the semi-boundedness of the potentidtom below. O

Proposition 4.5. Let the conditions dProposition 4.4e satisfiedlet for someR > 0
$(x) <0, xeBR) (4.13)

and let one of the two following conditions is satisfied
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(@) ¢ € C(R?) and for eachy € S, the serieszxey ¢ (- — x) converges locally uniformly
onX.

(b) d > 2,¢ € C(R?\ {0}), and for eachy € S, the serieszxeyqb( — x) converges
locally uniformly onX \ y.

Then the conditions offheorem 3.%re satisfied for eacp € G'(z, ¢).

Proof. Evidently, (a) implies condition (i) of heorem 3.@&nd (b) does (ii), so that we only
have to show3.15) Let us fix anyy € S It follows from the definition ofS, that there
existsC = C(y) € N such that

lyayl =CmM(Ay), NeN. (4.14)

Let us assume that i#.13)R = 1/4, otherwise only a trivial modification of the proof is
needed.

Fora > 0, let [a] denote the integer part af Supposing that there existfa(2N —1)4]+1
0, cubes inAy which contain at least@ points ofy, we come to a contradiction with
(4.14) Therefore, there exist at lea@V — 1)¢ —[1/2(2N — 1)¢] cubes which contain less
than 3 points ofy. SettingN — oo, we conclude that there exists an infinite sequence
{Qrx), k € N} of cubes which contair: 3C points ofy. Let x; denote the center of the
cubeQ, ). Then:

Vxe B 3),keN: [B(x, 3Nyl <3C (4.15)

In case of (a), we get big.15)

Vxe B, 1. keN: > ¢(x—y) < const (4.16)
yEY
and hence
Vxe By, 3).keN: p(y, x) > exp(—consy. (4.17)

Thereforep(y, -), as well as all measures® (y, -), k > 2, are infinite measures.

In the case of (b), we proceed as follows. Any bk, 1/4) contains & open disjoint
balls of of radius 1(12C), and at least one of these balls does not contain any pojnat of
Therefore, eaclB(x,, 1/4) contains a balB(y,, 1/(24C)) such that

1. , 1
VxeB Vi, % . Infyey|x — y| > % (418)
By (b) the functiong is bounded or{x € R? : 1/(24C) < |x| < R}, and therefore by
(4.15) and (4.18)we again conclude that atf® (y, -), k € N are infinite measures. [

Proposition 4.6. Let(SS), (LR), (1),and(S2)hold. Furthermorelet the interaction poten-
tial ¢ satisfy the following conditions

() ¢ € C3(R?\ {0}), e? is continuous orR?, and e V¢ extends to a continuous
vector-valued function oR?.
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(i) For eachy € S, the seriesy’ . ¢(- — %), 3 ¢, V(- —x),and ), ., ¢"(- —x)
converge locally uniformly oX \ y.
(iii) (4.5)holds and furthermore

¢" € LYR?, e ®m) N L3(RY, € %m). (4.19)
Thenanyu € G'(z, ¢), z > 0, satisfies the conditions dheorem 3.14

Proof. As easily seen, conditions (i)—(iii) @heorem 3.14re now satisfied. Indeed, let us
fix any y € S. By condition (ii):

p(y, x) = exp {— Z¢(x — y):| >0, xeR%\y. (4.20)

yey

It follows from the definition ofS, that, for anyy € S, ¥ \ {y} again belongs t§.., and
therefore, the function

Oyy 3 x> exp {— Y lx - z)} — expl-¢(x — y)lexp [— 3 - z)}

z€y zey\{y}

is continuous by (i) and (ii). Hence(y, -) is continuous ofR¢. Moreover, by (i), (ii), and
(4.20) the functionp(y, -) is two times differentiable oiR? \ y, and analogously to the
above, we conclude that the form

Oyy 3 x> Vip(y, x) = —€xp {—d)(x -N- Y ¢x— Z)}

zey\{y}

x (V¢(x -+ Y Vex— z))

zey\{y}
is continuous or0,, ,, so thatV, p(y, -) is continuous ofR?. Finally, for anyx € R? \ y:

Vio(y + &y, x) = —€Xp |:_¢(x -y = Z¢(x - Z):|

zey

zey

x (v¢(x —N+ ) Ve — z))

is differentiable iny onR< \ (y U {x}), and

Py +éx, )
Py Feyn LT
= —exp {—qb(x -V =) G- y)} (V¢(x —N+) V- z))
ey Zey

extends to a continuous form inon R<.
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That(3.8) holds follows from(4.5) and (S2) (see the proof &froposition 4.3 Thus, it
only remains to show th&8.40)is also satisfied.
It follows from the above that, for eaghe Su:

Bup,x)=— ) Vé(x—y, xey,
yey\ix}

and hence, by (i), (ii), we get forany y € y:

P'(x =) if x 7y,

V,B =
7Bu: ) [ _Zze)’\{x}‘ﬁ”(x —z) ifx=y.

Hence, for anyd € O¢(R%), we get

3
/F (ZZII%BM(%X)II) u(dy)

YEY XEYA

3

XEYA xeya yey\{x}

X€ya yey\{x}

3
< (22 > ||¢”(x—y)||) p(dy). (4.21)

The finiteness of the latter integral (4.21)follows from (4.19)in the same way a@}.10)
follows from (4.5). O

Remark 4.7. Let the interaction potentiap satisfy conditions oProposition 4.6 Then,

by usingLemma 2.1 Theorem 3.16and Proposition 4.4we easily see that, for every
W e DR

&R (W, W) = /F u(dy) A m(dxexp (— 3 - y)) VW + £, 012

Yey

1
+§/M(dy)/ m(dx)/ m(dy)
R4 R4

X exp (— dpa—x)=> oy—y)—pkx— y))

x'ey yey
x¢"'(x — YWy +ex+ ey, x) — W(y +ex + &y, )
x (W(y +&x + Ey, x)— W(y +eéex + &y, ).

Finally, we present several examples of potentials which satisfy conditiéhispbsitions
4.4 and 4.6
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Examplel. ¢ € C3(RY), ¢ > 0 onR?, andg(0) > 0.

Example 2. (Lennard-Jones type potentials)e C2(R? \ {0}), » > 0 onR?, ¢(x) =
clx|~% for x € B(r1), ¢(x) = 0 forx € B(r2)¢, wherec > 0,a > 0,0 < r1 < rp < 00.

Example 3. (Lennard—Jones 6-12 potentiadsy= 3, ¢(x) = c(|x| 12 — |x|76), ¢ > 0.
4.3. Gibbs measures on configuration spaces over manifolds

In this subsection, we will shortly discuss the case of a Gibbs measarel'y, where
X is again a general manifold.

We formulate the following conditions on the interaction potengiaivhich is now a
symmetric functiong : X2 — R U {+o0}.

(S) (Stability) There exist® > 0 such that, for anyt € O¢(X) and for ally € I',:
E5() =Y .y =—Blyl
{x.y}cy
() (Integrability) We have
C :=esssup| |€?®Y — 1m(dy) < .
xeX X

(F) (Finite range) There exis® > 0 such that
o(x,y) =0 ifd(x,y) > R.

In a completely analogous way as for the cas@®®f one defines a Gibbs measuyre
corresponding to the interaction potengiednd activity parameter > 0, and one denotes
by G(z, ¢) the set of all such measures.

Theorem 4.8 ([33-35).
(1) Let(S), (),and(F) hold, and letz > 0 be such that

1
— 8oyt
Z<2e( ),

whereB and C are as in(S) and(l), respectively. Therthere exists a Gibbs measure
u € G(z, ¢) such that the correlation functiorké") of the measurg satisfy the Ruelle
bound(4.3).

(2) Letg be a nonnegative potential which fulfi§ and(F). Then for eachz > 0, there
exists a Gibbs measure € G(z, ¢) such that the correlation functioﬂé”) of the
measureu satisfy the Ruelle bound.3).

Proposition 4.9. Suppose the conditions dheorem 4.8are satisfied and furthermore
suppose that the interaction potentiabatisfies the following conditions
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(i) ¢ € C2(X2\X?), e ?is continuous orX?, ande~? V¥ ¢ extends to a continuous vector
field onX?2 (hererq& denotes the gradient of the functigrin the first variable;
(i) We have

esssup| [(VErp(x, »I" exp(—¢(x, y)m(dy) < oo, k=1,2, n=1,23.
xeX X

Letu € G(z, ¢) be as inTheorem 4.8Then u satisfies the conditions @heorems 3.5 and
3.14

Proof. The proof of this proposition essentially follows the lines of the prodfraiposition
4.6, and is even easier, since due to condition (F) all series, ¢ (x, y),y € I'x,x € X\,
are finite. O

Proposition 4.10. Suppose that the manifoki satisfies the following condition

Vr>0: O< ing{ m(B(x, r)) < supm(B(x,r)) < oo. (4.22)
xXe

xeX

Assume that the conditions Bfoposition 4.%re satisfied and eithep is a continuous
bounded function ox?, or 4 > 2 and

Vi>0: sup sup |¢(x, y)| < oo.
xeX yeX,d(x,y)>r

Letu € G(z, ¢) be as inTheorem 4.8Then the conditions oTheorem 3.%re satisfied

Remark 4.11. Condition (4.22) is satisfied in the case of a manifold having bounded
geometry (sef21]). The upper estimate sup,m(B(x, r)) < oo,r > 0, holds for manifolds
having nonnegative Ricci curvature (see, 4., Proposition 5.5.}]

Proof. Let us fix any sequend&(x,, 2R), n € N} of disjoint balls inX, whereR is as in
(F). Let
N
Ay = JB(x,.2R). NeN. (4.23)

n=1

By (4.22) m(Ay) — ocoasN — oo. By Theorem 4.8the correlation functionla(f) satisfy
the Ruelle bound. Hence, it follows from (the proof [#2, Theorem 2.5.4that there exists
a subsequencAn), k € N} such that, foru-a.e.y € I', there existC = C(y) > 0
satisfying

|VAN(k)| < CM(Anw) forallk € N. (4.24)
By (4.22)—(4.24)

V! < C (supn(B(x, 2R>)> N#). keN.
xeX
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Since by(4.22) inf,cxm(B(x,r)) > 0,r > 0, the rest of the proof is now completely
analogous to the proof é¢froposition 4.5 O

Example. Suppose that the manifold satisfieq4.22) and for someR > 0

sup sup |V} f(x. y)lr,x <00, k=12
xeXyeB(x,R) ’

where
X253 (x,y) > flx,y) :=d(x, y)? € R.

(For example, these conditions are satisfied if the manifold has a periodical structure.) Let
@ e C%([0, 00)) be such that® > 0 on [0, c0) and®(x) = O for x > R2. Then, the
potentialg(x, y) := @(f(x, y)) satisfies the conditions éfropositions 4.9 and 4.10
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