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Abstract

LetΓX denote the space of all locally finite configurations in a complete, stochastically complete,
connected, oriented Riemannian manifoldX, whose volume measurem is infinite. In this paper, we
construct and study spacesL2

µΩ
n of differentialn-forms overΓX that are square integrable with

respect to a probability measureµ onΓX. The measureµ is supposed to satisfy the conditionΣ′m
(generalized Mecke identity) well known in the theory of point processes. OnL2

µΩ
n, we introduce

bilinear forms of Bochner and deRham type. We prove their closabilty and call the generators of
the corresponding closures the Bochner and deRham Laplacian, respectively. We prove that both
operators contain in their domain the set of all smooth local forms. We show that, under a rather
general assumption on the measureµ, the space of all Bochner-harmonicµ-square-integrable forms
onΓX consists only of the zero form. Finally, a Weitzenböck type formula connecting the Bochner
and deRham Laplacians is obtained. As examples, we consider (mixed) Poisson measures, Ruelle
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type measures onΓ
Rd , and Gibbs measures in the low activity–high temperature regime, as well as

Gibbs measures with a positive interaction potential onΓX.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let ΓX denote the space of all locally finite configurations in a complete, stochastically
complete, connected, oriented Riemannian manifoldX of infinite volume. The growing in-
terest in geometry and analysis on the configuration spacesΓX can be explained by the fact
that these naturally appear in different problems of statistical mechanics, quantum physics,
and the theory of point processes. In[7–9], an approach to the configuration spaces as
infinite-dimensional manifolds was initiated. This approach was motivated by the theory
of representations of diffeomorphism groups (see[27,28,53]; these references as well as
[9,11] also contain discussion of relations with quantum physics). We refer the reader to
[10,11,38,50], and references therein for further discussion of analysis on the configuration
spaces and applications. Let us stress thatΓX is essentially the space of infinite configura-
tions. Geometry and topology of the spaces of finite configurations have been discussed by
many authors, see[25] and the references therein, and form quite a different field.

On the other hand, stochastic differential geometry of infinite-dimensional manifolds,
in particular, their (stochastic) cohomologies and related questions (Laplace operators and
Sobolev calculus in spaces of differential forms, harmonic forms, Hodge decomposition),
has been a very active topic of research in recent years. It turns out that many important
examples of infinite-dimensional nonflat spaces (loop spaces, product manifolds, configu-
ration spaces) are naturally equipped with probability measures (Brownian bridge, Poisson
measures, Gibbs measures). Properties of these measures depend in a nontrivial way on the
differential geometry of the underlying spaces themselves, and play therefore a significant
role in their study. Moreover, in many cases the absence of a proper smooth manifold struc-
ture makes it more natural to work withL2-objects (such as functions, sections, etc.) on
these infinite-dimensional spaces, rather than to define analogs of the smooth ones.

Thus, the concept of anL2-deRham complex has an important meaning in this frame-
work. The study ofL2-cohomologies for finite-dimensional manifolds, initiated in[16],
has been a subject of many works (see, e.g.[18,22,24]and the review papers[41,46]).
In the infinite-dimensional case, loop spaces have been most studied[23,29,36,37], the
papers[23,37] containing also a review of the subject. The deRham complex on infinite
product manifolds with Gibbs measures (which appear in connection with problems of
classical statistical mechanics) was constructed in[1,2] (see also[17] for the case of the
infinite-dimensional torus). We should also mention the papers[6,13–15,52], where the
case of a flat (Hilbert) state space has been considered (theL2-cohomological structure
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turns out to be nontrivial even in this case due to the existence of interesting measures on
such a space).

In [3,4], the authors started the study of differential forms over the infinite-dimensional
spaceΓX and the corresponding Laplacians (of Bochner and deRham type) acting in the
L2-spaces with respect to a Poisson measure. In[5], the associatedL2-cohomologies have
been investigated.

Another approach to the construction of differential forms and related objects over Pois-
son spaces, based on the “transfer principle” from Wiener spaces, was proposed in[49] (see
also[47,48]).

It should be stressed that the choice of an underlying measure plays a crucial role in all
these studies. The results of[3–5] have only covered the case of Poisson measures, which
are related to mathematical models of “free” systems, i.e., systems without interaction.
The choice of more complicated measures, such as Gibbs type perturbations of Poisson
measures, is particularly motivated by the study of interacting systems of classical statistical
mechanics. Properties of the corresponding Laplace operators may then strongly depend
on the choice of an appropriate measure.

In order to develop a reasonable theory covering also this case, we need to restrict our-
selves to a class of measures onΓX that possess a certain regularity. So, we consider
those measuresµ which satisfy the following condition: for any measurable functionF :
ΓX ×X→ R, F ≥ 0:∫

ΓX

µ(dγ)
∑
x∈γ

F(γ, x) =
∫
ΓX

µ(dγ)
∫
X

σ(γ,dx)F(γ ∪ {x}, x), (1.1)

whereσ(γ, ·) is a Borel measure onX which is absolutely continuous with respect to the
volume measurem onX forµ-a.e.γ ∈ ΓX. In particular, the Poisson measure with intensity
ρ(x)m(dx) satisfies(1.1) with σ(γ,dx) = ρ(x)m(dx), and in this case(1.1) becomes the
classical Mecke identity[43] (see also[30,31]). Furthermore, as shown by Georgii[26] and
Nguyen and Zessin[45], (1.1) holds for all Gibbs measures. The class of all probability
measures onΓX satisfying(1.1) was singled out in[42] (see also[54]), where(1.1) was
called conditionΣ′m. A relation between this condition and an integration by parts formula
for a measureµ was studied in[38].

An iterated application of(1.1) to a functionF : ΓX × Xk → R, k ∈ N, gives rise to a
family of random measuresσ(k)(γ) onXk.

The structure of the present paper is as follows. InSection 2we recall the definition of a
differential form overΓX, first given in[3,4], and introduce the spacesL2

µΩ
n of forms that

are square integrable with respect toµ. We construct a unitary isomorhism:

In : L2
µΩ

n →
n⊕

k=1

L2
µ


ΓX → ⋃

γ∈ΓX
L2
σ(k)(γ)

Ψn
sym(X

k)


 , (1.2)

whereL2
µ(ΓX → ∪γ∈ΓXL2

σ(k)(γ)
Ψn

sym(X
k)) is the space ofµ-square-integrable mappings:

ΓX 
 γ �→ W(γ) ∈ L2
σ(k)(γ)

Ψn
sym(X

k) (1.3)
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andL2
σ(k)(γ)

Ψn
sym(X

k) is a space ofn-forms overXk that are square integrable with respect

to σ(k)(γ) and satisfy some additional conditions. In the case whereµ is a Poisson measure
π, the isomorphismIn was constructed in[5].

In Section 3, we define Bochner type operators inL2
µΩ

n. First, we introduce the bilinear
form:

EB
µ,n(W

(1),W(2)) :=
∫
ΓX

〈∇ΓW(1)(γ),∇ΓW(2)(γ)〉µ(dγ)

on the space of smooth local forms, where∇Γ is the covariant derivative onΓX (introduced
in [3,4]), and prove its closability. We call the corresponding generatorHB

µ,n the Bochner
Laplacian onΓX associated withµ.

Further, we show that, under the action of the isomorphismIn, the formEB
µ,n can be

expressed via Bochner type bilinear formsEB
σ(k)(γ)

associated with the measuresσ(k)(γ)
onXk, k = 1, . . . , n, µ-a.e.γ ∈ ΓX. As an application of this result, we derive sufficient
conditions for the space of all Bochner-harmonicµ-square-integrable forms onΓX to consist
only of the zero form. Let us remark that we do not assume extremality ofµ, so that
nonconstantµ-square-integrable harmonic functions onΓX may in general exist[10].

In Section 4, we introduce and study the structure of the deRham complex in the spaces
L2
µΩ

n. Following [5], we first define a Hodge–deRham differentialdn on the space of
smooth local forms. We prove the closability of thedn’s as operators fromL2

µΩ
n into

L2
µΩ

n+1 and consider the Hilbert complex:

· · · d̄n−1→ L2
µΩ

n d̄n→L2
µΩ

n+1d̄n+1→ · · · ,

whered̄n’s are the corresponding closures. Next, we define a Hodge–deRham Laplacian
HR
µ,n as the generator of the closed form:

ER
µ,n(W

(1),W(2)) := (d̄nW(1), d̄nW(2))L2
µΩ

n+1 + (d∗n−1W
(1),d∗n−1W

(2))L2
µΩ

n−1

onL2
µΩ

n with domainD(ER
µ,n) = D(d̄n)∩D(d∗n−1). We prove that, under certain additional

conditions onµ, the domain of the operatorHR
µ,n contains smooth local forms. This gives

us a possibility to prove, forHB
µ,n andHR

µ,n, an analog of the Weitzeböck formula.
In Section 4, we consider our main examples: Gibbs measures with pair interaction on

ΓX. More exactly, we consider in details Ruelle type measures onΓRd (cf. [51]), and Gibbs
measures in the low activity–high temperature regime, as well as Gibbs measures with
positive potentials onΓX. In these cases, we get more explicit expressions for the Bochner
and deRham Laplacians.

2. Differential forms over a configuration space

LetX be a complete, connected, oriented,C∞ Riemannian manifold of infinite volume.
Let d denote the dimension ofX. Let 〈·, ·〉x denote the inner product in the tangent space
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TxX toX at a pointx ∈ X. The associated norm will be denoted by| · |x. Let∇X stand for
the gradient onX.

The configuration spaceΓX overX is defined as the set of all locally finite subsets
(configurations) inX:

ΓX := {γ ⊂ X| |γΛ| <∞ for each compactΛ ⊂ X }.
Here,γΛ := γ ∩Λ and|A| denotes the cardinality of a setA.

We can identify anyγ ∈ ΓX with the positive, integer-valued Radon measure:∑
x∈γ

εx ∈M(X),

whereεx is the Dirac measure with mass atx,
∑

x∈øεx :=zero measure, andM(X) denotes
the set of all positive Radon measures on the Borelσ-algebraB(X). The spaceΓX is endowed
with the relative topology as a subset of the spaceM(X) with the vague topology, i.e., the
weakest topology onΓX with respect to which all maps:

ΓX 
 γ �→ 〈f, γ〉 :=
∫
X

f(x)γ(dx) ≡
∑
x∈γ

f(x)

are continuous. Here,f ∈ C0(X) (:= the set of all continuous functions onXwith compact
support). LetB(ΓX) denote the corresponding Borelσ-algebra.

The tangent space toΓX at a pointγ is defined as the Hilbert space:

TγΓX := L2(X→ TX; γ) ≡ ⊕x∈γTxX. (2.1)

The scalar product and the norm inTγΓX will be denoted by〈·, ·〉γ and‖ · ‖γ , respectively.
Thus, eachV(γ) ∈ TγΓX has the formV(γ) = (V(γ, x))x∈γ , whereV(γ, x) ∈ TxX, and

‖V(γ)‖2
γ =

∑
x∈γ

|V(γ, x)|2x.

We now recall how to define derivatives of a functionF : ΓX → R. Letγ ∈ ΓX andx ∈ γ.
ByOγ,x we denote an arbitrary open neighborhood ofx inX such thatOγ,x∩ (γ \ {x}) = ø.
We define the function

Oγ,x 
 y �→ Fx(γ, y) := F(γ − εx + εy) ∈ R.

We say thatF is differentiable atγ ∈ ΓX if, for eachx ∈ γ, the functionFx(γ, ·) is
differentiable atx and

∇Γ F(γ) := (∇X
x F(γ))x∈γ ∈ TγΓX, ∇X

x F(γ) := ∇XFx(γ, x).

Analogously, the higher order derivatives ofF are defined,(∇Γ )(k)F(γ) ∈ (TγΓX)
⊗k,

k ∈ N.
LetOc(X)denote the set of all open, relatively compact sets inX. A functionF : ΓX → R

is called local if there existsΛ ∈ Oc(X) such thatF(γ) = F(γΛ) for eachγ ∈ ΓX.
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Any function of the form:

F(γ) = gF (〈ϕ1, γ〉, . . . , 〈ϕN, γ〉), (2.2)

wheregF ∈ C∞b (RN) andϕ1, . . . , ϕN ∈ D := C∞0 (X) (:= the set of all infinitely differ-
entiable functions onX with compact support), is local, bounded, infinitely differentiable,
and the derivatives ofF are polynomially bounded:

∀ k ∈ N ∃ϕ ∈ C0(X), ϕ ≥ 0 : ‖(∇Γ )(k)F(γ)‖2
(TγΓX)⊗k ≤ 〈ϕ, γ〉

k for all γ ∈ ΓX.
(2.3)

The set of all functions of the form(2.2)will be denoted byFC∞b (D, ΓX).
Vector fields and first order differential forms onΓX will be identified with sections of

the bundleTΓX. Higher order differential forms will be identified with sections of the tensor
bundles∧n(TΓX) with fibers:

∧n(TγΓX) = ∧n
(⊕x∈γTxX

)
, (2.4)

where∧n(H) (orH∧n) stands for thenth antisymmetric tensor power of a Hilbert space
H. Thus, under a differential formW of ordern, n ∈ N, overΓX, we will understand a
mapping:

ΓX 
 γ �→ W(γ) ∈ ∧n(TγΓX). (2.5)

We will now recall how to introduce a covariant derivative of a differential form(2.5).
Let γ ∈ ΓX andx ∈ γ. We define the mapping

Oγ,x 
 y �→ Wx(γ, y) := W(γy) ∈ ∧n(TγyΓX), γy := γ − εx + εy.

This is a section of the Hilbert bundle:

∧n(TγyΓX) �→ y ∈ Oγ,x. (2.6)

The Levi–Civita connection onTX generates in a natural way a connection on this bundle.
We denote by∇X

γ,x the corresponding covariant derivative and use the notation

∇X
x W(γ)∇X

γ,x Wx(γ, x) ∈ TxX⊗ (∧n(TγΓX))
if the sectionWx(γ, ·) is differentiable atx.

We say that the formW is differentiable at a pointγ if for eachx ∈ γ the sectionWx(γ, ·)
is differentiable atx, and

∇ΓW(γ) := (∇X
x W(γ))x∈γ ∈ TγΓX ⊗ (∧n(TγΓX)).

The mapping

ΓX 
 γ �→ ∇ΓW(γ) ∈ TγΓX ⊗ (∧n(TγΓX))
will be called the covariant gradient of the formW .

Analogously, one can introduce higher order derivatives of a differential formW . Pre-
cisely, thekth derivative(∇Γ )(k)W(γ) belongs to(TγΓX)⊗k ⊗ (∧n(TγΓX)).
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Let us note that, for anyη ⊂ γ, the space∧n(TηΓX) can be identified in a natural way
with a subspace of∧n(TγΓX). In this sense, we will use the expressionW(γ) = W(η)

without additional explanations.
A formW : ΓX → ∧n(TΓX) is called local if there existsΛ = Λ(W) ∈ Oc(X) such that

W(γ) = W(γΛ) for eachγ ∈ ΓX.
LetFΩn denote the set of all local, infinitely differentiable formsW : ΓX → ∧n(TΓX)

such that there existϕ ∈ C0(X), ϕ ≥ 0, andl ∈ N (depending onW) satisfying:

‖W(γ)‖2
∧n(TγΓX) ≤ 〈ϕ, γ〉l for all γ ∈ ΓX. (2.7)

Below, we will give an explicit construction of a class of forms belonging toFΩn.
Letµ be a probability measure on(ΓX,B(ΓX)) which has all moments finite, i.e.:

∀ k ∈ N,∀ϕ ∈ C0(X), ϕ ≥ 0 :
∫
ΓX

〈ϕ, γ〉kµ(dγ) <∞. (2.8)

Our next goal is to give a description of the space ofn-forms that are square integrable with
respect to the measureµ.

Let F̃Ωn
µ

denote theµ-classes determined byFΩn. We define oñFΩn
µ

theL2-scalar
product with respect to the measureµ:

(W1,W2)L2
µΩ

n :=
∫
ΓX

〈W1(γ),W2(γ)〉∧n(TγΓX) µ(dγ). (2.9)

The integral on the right hand side of(2.9) is finite because of(2.7) and (2.8). Now, we

define the Hilbert spaceL2
µΩ

n = L2(ΓX → ∧n(TΓX);µ) as the completion of̃FΩn
µ

with respect to the norm generated by the scalar product(2.9). In what follows, we will not

distinguish in notations betweenFΩn andF̃Ωn
µ

, since it will be clear from the context
which of these sets we mean.

Letmdenote the volume measure onX. From now on, we suppose that, for any measurable
functionF : ΓX ×X→ R, F ≥ 0:∫

ΓX

µ(dγ)
∫
X

γ(dx)F(γ, x) =
∫
ΓX

µ(dγ)
∫
X

σ(γ,dx)F(γ + εx, x), (2.10)

whereσ(γ, ·)" m for µ-a.e.γ ∈ ΓX. We shall use the notation

ρ(γ, x) := dσ(γ, ·)
dm

(x).

In the theory of point processes, this property of the measureµ is calledΣ′m (see[42]). All
Gibbs measures, in particular, all Poisson measures satisfy this property (see[26,43,45]).
We consider this case inSection 4.

We will need the following consequence of the propertyΣ′m. Let : γ⊗k : be the measure
onXk given by

: γ⊗k : (dx1, . . . ,dxk) :=
∑

{y1,...,yk}⊂γ
εy1⊗̂ · · · ⊗̂εyk (dx1, . . . ,dxk),
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where

εy1⊗̂ · · · ⊗̂εyk (dx1, . . . ,dxk) := 1

k!

∑
σ∈Sk

εyσ(1) ⊗ · · · ⊗ εyσ(k) (dx1, . . . ,dxk),

Sk denoting the group of all permutations of{1, . . . , k}.
Forµ-a.e.γ ∈ ΓX, we denote byσ(k)(γ, ·) the measure onXk given by

σ(k)(γ,dx1, . . . ,dxk) := σ(γ,dx1)σ(γ + εx1,dx2) · · · σ(γ + εx1 + · · · + εxk−1,dxk)

and letµ(k) be the measure onΓX ×Xk defined by

µ(k)(dγ,dx1, . . . ,dxk) := µ(dγ)σ(k)(γ,dx1, . . . ,dxk).

Lemma 2.1. For any measurableF : ΓX ×Xk → R, F ≥ 0, k ∈ N:

k!
∫
ΓX

µ(dγ)
∫
Xk

: γ⊗k : (dx1, . . . ,dxk)F(γ, x1, . . . , xk)

=
∫
ΓX×Xk

µ(k)(dγ,dx1, . . . ,dxk)F(γ + εx1 + · · · + εxk , x1, . . . , xk). (2.11)

Proof. We prove this by induction. Fork = 1, (2.11) is just (2.10). Let us suppose that
(2.11)holds up tok − 1. As easily seen:

k : γ⊗k : (dx1, . . . ,dxk) = γ(dxk) : (γ − εxk )
⊗k−1 : (dx1, . . . ,dxk−1).

Then, by the induction hypothesis we have

k!
∫
ΓX

µ(dγ)
∫
Xk

: γ⊗k : (dx1, . . . ,dxk)F(γ, x1, . . . , xk)

=
∫
ΓX

µ(dγ)
∫
X

γ(dxk)(k − 1)!
∫
Xk−1

: (γ − εxk )
⊗(k−1) : (dx1, . . . ,dxk−1)

×F(γ, x1, . . . , xk)

=
∫
ΓX

µ(dγ)
∫
X

σ(γ,dxk)
∫
Xk−1

: γ⊗(k−1) : (dx1, . . . ,dxk−1)F(γ+εxk , x1, . . . , xk)

=
∫
ΓX

µ(dγ)
∫
Xk−1

: γ⊗k−1 : (dx1, . . . ,dxk−1)

∫
X

σ(γ,dxk)F(γ + εxk , x1, . . . , xk)

=
∫
ΓX

µ(dγ)
∫
X

σ(γ,dx1)

∫
X

σ(γ + εx1,dx2) · · ·
∫
X

σ(γ + εx1 + · · · + εxk−1,dxk)

×F(γ + εx1 + · · · + εxk , x1, . . . , xk).

�

We will now give an isomorphic description of the spaceL2
µΩ

n. We first need some
preparations. Let

X̃k := {(x1, . . . , xk) ∈ Xk : xi %= xj if i %= j}.
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Notice that the setXk \ X̃k is of zerom⊗k measure. We have, for each(x1, . . . , xk) ∈ X̃k:

∧n(T(x1,...,xk)X
k) = ∧n

(
⊕k
i=1TxiX

)
= ⊕

0≤l1,...,lk≤d
l1+···+lk=n

(Tx1X)
∧l1 ∧ · · · ∧ (TxkX)∧lk .

(2.12)

For a formω : Xk → ∧n(TXk) and(x1, . . . , xk) ∈ X̃k, we denote byω(x1, . . . , xk)l1,...,lk
the corresponding component ofω(x1, . . . , xk) in the decomposition(2.12).

We introduce a setΨn
sym(X

k) of smooth formsω : Xk → ∧n(TXk) which have compact

support and satisfy oñXk the following assumptions:

(i) ω(x1, . . . , xk)l1,...,lk = 0 if lj = 0 for somej ∈ {1, . . . , k}.
(ii) ω is invariant under the action of the groupSk:

ω(x1, . . . , xk) = ω(xσ(1), . . . , xσ(k)) for eachσ ∈ Sk (2.13)

(we identify the spacesT(x1,...,xk)X
k = ⊕k

i=1TxiX andT(xσ(1),...,xσ(k))X
k = ⊕k

i=1Txσ(i)
through the natural isomorphism).

Using(2.8)andLemma 2.1, we easily conclude that any mapping of the form:

ΓX ×Xk 
 (γ, x1, . . . , xk) �→ F(γ)ω(x1, . . . , xk) ∈ ∧n(T(x1,...,xk)X
k), (2.14)

whereF ∈ FC∞b (D, ΓX) andω ∈ Ψn
sym(X

k) belongs to the spaceL2(ΓX × Xk →
∧n(TXk);µ(k)). Let L2

Ψ (ΓX × Xk → ∧n(TXk);µ(k)) denote the closed linear span of
all mappings of the form(2.14)in L2(ΓX × Xk → ∧n(TXk);µ(k)). It is not hard to show
that the latter is just the space of allµ(k)-square-integrable mappings of the form:

ΓX × X̃k 
 (γ, x1, . . . , xk) �→W(γ, x1, . . . , xk) ∈ T
(n)
{x1,...,xk}X

k

such that, forµ(k)-a.e.(γ, x1, . . . , xk) ∈ ΓX × X̃k:

W(γ, x1, . . . , xk) =W(γ, xσ(1), . . . , xσ(k)), σ ∈ Sk.
Here:

T
(n)
{x1,...,xk}X

k := ⊕
1≤l1,...,lk≤d
l1+···+lk=n

(Tx1X)
∧l1 ∧ · · · ∧ (TxkX)∧lk (2.15)

(Notice that the spaceT(n)
{x1,...,xk}X

k is indeed independent of the order of the pointsx1, . . . , xk.)

Remark 2.2. Evidently:

L2
Ψ (ΓX ×Xk �→ ∧n(TXk);µ(k)) = L2

µ


ΓX → ⋃

γ∈ΓX
L2
σ(m)(γ)

Ψn
sym(X

m)


 ,

where the latter space was defined inSection 1(see formulas(1.2) and (1.3)).
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By virtue of (2.4) and (2.15), we have

∧n(TγΓX) = ⊕n
k=1⊕{x1,...,xk}⊂γ T

(n)
{x1,...,xk}X

k. (2.16)

ForW ∈ ΓX → ∧n(TΓX), we denote byWk(γ) ∈ ⊕{x1,...,xk}⊂γT
(n)
{x1,...,xk}X

k the correspond-
ing component ofW(γ) ∈ ∧n(TγΓX) in the decomposition(2.16). Thus, for{x1, . . . , xk} ⊂
γ,Wk(γ, x1, . . . , xk) is equal to the projection ofW(γ) onto the subspaceT(n)

{x1,...,xk}X
k.

Proposition 2.3. The spaceL2
µΩ

n is unitarily isomorphic to the space

n⊕
k=1

L2
Ψ (ΓX ×Xk → ∧n(TXk);µ(k)), (2.17)

where the corresponding isomorphismIn is defined by the formula

InkW(γ, x1, . . . , xk) := (k!)−1/2Wk(γ+εx1+ · · ·+εxk , x1, . . . , xk), k = 1, . . . , n.

(2.18)

Here, InkW := (InW)k is thek-th component ofInW in the decomposition(2.17).

Proof. A direct calculation shows that

‖W(γ)‖2
∧n(TγΓX)=

n∑
k=1

∫
Xk

‖Wk(γ, x1, . . . , xk)‖2
T
(n)
{x1,...,xk }X

k
: γ⊗k : (dx1, . . . ,dxk).

(2.19)

Therefore, byLemma 2.1, we have for anyW ∈ FΩn:∫
ΓX

‖W(γ)‖2
∧n(TγΓX)µ(dγ)

=
n∑

k=1

∫
ΓX×Xk

‖Wk(γ + εx1 + · · · + εxk , x1, . . . , xk)‖2
T
(n)
{x1,...,xk }X

k

×µ(k)(dγ,dx1, . . . ,dxk).

Hence,In is an isometry of the spaceL2
µΩ

n into the space(2.17). Next, the image of each
mapping(2.14)under(I(n))−1 is given by

Wl(γ, x1, . . . , xl) :=
{

0, l %= k,

(k!)1/2F(γ − εx1 − · · · − εxk )ω(x1, . . . , xk), l = k
(2.20)

and evidently belongs toFΩn. Therefore,In is “onto”. �

In what follows, we will denote byDΩn the linear span of the forms defined by(2.20)
with k = 1, . . . , n. As we already noticed in the proof ofProposition 2.3,DΩn is a subset
of FΩn and is dense inL2

µΩ
n.
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3. Laplace operators on differential forms over configuration spaces

In this section, we introduce differential operators associated with the measureµ onΓX
which act in the space of square-integrable forms. These operators generalize the notions
of Bochner and deRham Laplacians on finite-dimensional manifolds. But first, we consider
the Dirichlet operator in the spaceL2(ΓX;µ).

3.1. Dirichlet operator on functions

For eachγ ∈ ΓX, consider the triple:

Tγ,∞ΓX ⊃ TγΓX ⊃ Tγ,0ΓX.

Here,Tγ,0ΓX consists of all finite sequences fromTγΓX, andTγ,∞ΓX := (Tγ,0ΓX)
′ is the

dual space, which consists of all sequencesV(γ) = (V(γ, x))x∈γ , whereV(γ, x) ∈ TxX.
The pairing between anyV(γ) ∈ Tγ,∞ΓX andv(γ) ∈ Tγ,0ΓX with respect to the zero space
TγΓX is given by

〈V(γ), v(γ)〉γ =
∑
x∈γ
〈V(γ, x), v(γ, x)〉x

(the series is, in fact, finite). From now on, under a vector field overΓX we will understand
mappings of the formΓX 
 γ �→ V(γ) ∈ Tγ,∞ΓX.

We will suppose that, forµ⊗m-a.e.(γ, x) ∈ ΓX×X, ρ(γ, x) > 0 and forµ-a.e.γ ∈ ΓX,
the functionρ(γ, ·) is weakly differentiable onX. We set

βσ(γ, x) := ∇X
x ρ(γ, x)

ρ(γ, x)
, µ⊗m-a.e. (γ, x) ∈ ΓX ×X

(βσ(γ, ·) is called the logarithmic derivative of the measureσ(γ, ·)).
The logarithmic derivative of the measureµ is set to be theµ-a.e. defined vector field on

ΓX given by

γ �→ Bµ(γ) = (Bµ(γ, x))x∈γ ∈ Tγ,∞ΓX, Bµ(γ, x) := βσ(γ − εx, x).

We define a bilinear formEµ on the spaceL2(ΓX;µ) by setting

Eµ(F
(1), F(2)) :=

∫
ΓX

〈∇Γ F(1)(γ),∇Γ F(2)(γ)〉γµ(dγ), (3.1)

whereF(1), F(2) ∈ D(Eµ) := FC∞b (D, ΓX). By (2.3) and (2.8), and[40, Theorem 2.4],
(Eµ,FC∞b (D, ΓX)) is a pre-Dirichlet form.

Theorem 3.1. Suppose that, for anyΛ ∈ Oc(X):

∫
ΓX


∑
x∈γΛ

|Bµ(γ, x)|x



2

µ(dγ) <∞. (3.2)
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Then, for anyF(1), F(2) ∈ FC∞b (D, ΓX), we have

Eµ(F
(1), F(2)) =

∫
ΓX

(HµF
(1))(γ)F(2)(γ)µ(dγ), (3.3)

whereHµ is the operator in the spaceL2(ΓX;µ) with domainFC∞b (D, ΓX) given by

(HµF)(γ) := −∆ΓF(γ)− 〈∇Γ F(γ), Bµ(γ)〉γ , F ∈ FC∞b (D, ΓX). (3.4)

Here:

∆ΓF(γ) :=
∑
x∈γ

∆X
x F(γ), ∆X

x F(γ) := ∆XFx(γ, x), (3.5)

where∆X denotes the Laplacian onX corresponding to the volume measurem.

Corollary 3.2. (Eµ,FC∞b (D, ΓX)) is closable onL2(ΓX;µ). Its closure, denoted by
(Eµ,D(Eµ)), is associated with a positive definite self-adjoint operator, the Friedrichs
extension ofHµ, which we also denote byHµ.

Remark 3.3. In case of a Ruelle measure, a theorem on theL2-generator of the bilinear
form (3.1)was proved in[10]. A theorem on the closability of the form(3.1)in the case of a
Gibbs measure on a manifoldXwas proved in[20] and in the general case of aΣ′m-measure
in [40] (see also[39]).

Proof of Theorem 3.1. First, we note that, for eachF ∈ FC∞b (D, ΓX) and eachγ ∈ ΓX,
the functionf(x) := F(γ + εx)− F(γ) belongs toD and∇Xf(x) = ∇X

x F(γ + εx).
Let nowF(1), F(2) ∈ FC∞b (D, ΓX) and letΛ ∈ Oc(X) be such that there exits a compact

Λ′ ⊂ Λ satisfyingF(i)(γ) = F(i)(γΛ′), i = 1,2, for all γ ∈ ΓX. Then, by(2.10)∫
ΓX

〈∇Γ F(1)(γ),∇Γ F(2)(γ)〉γµ(dγ)

=
∫
ΓX

µ(dγ)
∫
Λ

m(dx)ρ(γ, x)〈∇X
x F

(1)(γ + εx),∇X
x F

(2)(γ + εx)〉x

= −
∫
ΓX

µ(dγ)
∫
Λ

m(dx)ρ(γ, x)(∆X
x F

(1)(γ + εx)+ 〈∇X
x F

(1)(γ + εx), βσ(γ, x)〉x)

×F(2)(γ + εx)

= −
∫
Γ

µ(dγ)
∑
x∈γΛ

(∆X
x F

(1)(γ)+ 〈∇X
x F

(1)(γ), Bµ(γ, x)〉x)F(2)(γ)

=
∫
Γ

(HµF
(1))(γ)F(2)(γ).

As easily seen, condition(3.2)guarantees the inclusionHµF
(1) ∈ L2(Γ ;µ). �
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3.2. Bochner Laplacian on forms

Let us consider the bilinear formEB
µ,n defined by

EB
µ,n(W

(1),W(2)) =
∫
ΓX

〈∇ΓW(1)(γ),∇ΓW(2)(γ)〉TγΓX⊗∧n(TγΓX)µ(dγ), (3.6)

whereW(1),W(2) ∈ D(EB
µ,n) := DΩn. It follows from the definition ofDΩn that, for each

W ∈ DΩn, there existsϕ ∈ D, ϕ ≥ 0, such that

‖∇ΓW(γ)‖2
TγΓX⊗∧n(TγΓX) ≤ 〈ϕ, γ〉n+1 for all γ ∈ ΓX (3.7)

and therefore, by(2.8), the function under the sign of integral in(3.6) is integrable with
respect toµ.

The following lemma shows that the bilinear form(EB
µ,n,DΩ

n) is well defined onL2Ωn.

Lemma 3.4. We haveEB
µ,n(W

(1),W(2)) = 0 for all W(1),W(2) ∈ DΩn such thatW(1) = 0
µ-a.e.

Proof. LetW ∈ DΩn andW = 0µ-a.e. Forx0 ∈ X andR > 0, let

B(x0, R) := {x ∈ X|d(x0, x) < R},
whered(·, ·) denotes the Riemannian distance onX. Then

0=
∫
ΓX

µ(dγ)
∫
B(x0,R)

γ(dx)‖W(γ)‖∧n(TγΓX)

=
∫
ΓX

µ(dγ)
∫
B(x0,R)

m(dx)ρ(γ, x)‖W(γ + εx)‖∧n(Tγ+εxΓX).

SinceR was arbitrary, we therefore have

‖W(γ + εx)‖∧n(Tγ+εxΓX) = 0, µ⊗m-a.e. (γ, x) ∈ ΓX ×X.

For a fixedγ ∈ ΓX, the functionX \ γ 
 x �→ ‖W(γ + εx)‖∧n(Tγ+εxΓX) is continuous, and
therefore forµ-a.e.γ ∈ ΓX,W(γ + εx) = 0 onX \ γ. Hence

EB
µ,n(W,W)=

∫
ΓX

µ(dγ)
∫
X

γ(dx)‖∇X
x W(γ)‖2

TxX⊗∧n(TγΓX)

=
∫
ΓX

µ(dγ)
∫
X

m(dx)ρ(γ, x)‖∇X
x W(γ + εx)‖2

Tx(X)⊗∧n(Tγ+εxΓX) = 0.

From here the lemma follows by the Schwarz inequality. �

Theorem 3.5. Suppose that

∀Λ ∈ Oc(X) ∃ε > 0 :
∫
ΓX


∑
x∈γΛ

|Bµ(γ, x)|x



2+ε

µ(dγ) <∞. (3.8)
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Then, for anyW(1),W(2) ∈ DΩn, we have

EB
µ,n(W

(1),W(2)) =
∫
ΓX

〈HB
µ,nW

(1)(γ),W(2)(γ)〉∧n(TγΓX)µ(dγ),

whereHB
µ,n is the operator in the spaceL2

µΩ
n with domainDΩn given by

HB
µ,nW(γ) := −∆ΓW(γ)− 〈∇ΓW(γ), Bµ(γ)〉γ , W ∈ DΩn. (3.9)

Here:

∆ΓW(γ) :=
∑
x∈γ

∆X
x W(γ), (3.10)

where∆X
x is the Bochner Laplacian of the bundle∧n(TγyΓX) �→ y ∈ Oγ,x with the volume

measurem.

Proof. We first note that, for anyW ∈ DΩn, the formHB
µ,nW defined by(3.9) and (3.10)

belongs toL2
µΩ

n. Indeed, as easily seen,∆ΓW ∈ FΩn, and hence∆ΓW ∈ L2
µΩ

n. Next,
choose anyΛ ∈ Oc(X) such that there exists a compactΛ′ ⊂ Λ satisfyingW(γ) = W(γΛ′)
for all γ ∈ ΓX. Then:∫

ΓX

‖〈∇ΓW(γ), Bµ(γ)〉γ‖2
∧n(TγΓX)µ(dγ)

=
∫
ΓX

∥∥∥∥∥∥
∑
x∈γΛ

〈∇X
x W(γ), Bµ(γ, x)〉x

∥∥∥∥∥∥
2

∧n(TγΓX)
µ(dγ)

≤
∫
ΓX


∑
x∈γΛ

‖∇X
x W(γ)‖TxX⊗∧n(TγΓX)|Bµ(γ, x)|x




2

µ(dγ). (3.11)

As easily seen, there existsϕ ∈ C0(X), ϕ ≥ 0, such that

‖∇X
x W(γ)‖2

TxX⊗∧n(TγΓX) ≤ 〈ϕ, γ〉n for all γ ∈ ΓX, x ∈ γ. (3.12)

Now, by using(2.8), (3.8), (3.11) and (3.12), and the Schwarz inequality, we conclude that∫
ΓX

‖〈∇ΓW(γ), Bµ(γ)〉γ‖2
∧n(TγΓX) µ(dγ) <∞. (3.13)

Next, we will need the following lemma, whose proof follows directly from the construction
of the forms fromDΩn.

Lemma 3.6. For each fixedW ∈ DΩn andγ ∈ ΓX, the mapping

X \ γ 
 x �→ ω(x) := W(γ + εx) ∈ ∧n(Tγ+εxΓX) = ∧n(TγΓX ⊕ TxX)

(uniquely) extends to a smooth form

X 
 x �→ ω(x) ∈ ∧n(TγΓX ⊕ TxX),
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and∇Xω = 0 onΛc := X \Λ, whereΛ ⊂ X is compact and such thatW(γ ′) = W(γ ′Λ)
for all γ ′ ∈ ΓX.

Let W(1),W(2) ∈ DΩn and letΛ ∈ Oc(X) be such that there exits a compactΛ′ ⊂ Λ

satisfyingW(i)(γ) = W(i)(γΛ′), i = 1,2, for all γ ∈ ΓX. Then, by virtue of(2.10) and
(3.13), andLemma 3.6we get, analogously to the proof ofTheorem 3.1:

EB
µ,n(W

(1),W(2))

=
∫
ΓX

µ(dγ)
∫
Λ

γ(dx)〈∇X
x W

(1)(γ),∇X
x W

(2)(γ)〉TxX⊗∧n(TγΓX)

=
∫
ΓX

µ(dγ)
∫
Λ

m(dx)ρ(γ, x)〈∇X
x W

(1)(γ + εx),∇X
x W

(2)(γ + εx)〉TxX⊗∧n(Tγ+εx )

= −
∫
ΓX

µ(dγ)
∫
Λ

m(dx)ρ(γ, x)[〈∆X
x W

(1)(γ + εx),W
(2)(γ + εx)〉∧n(Tγ+εx )

+〈〈∇X
x W

(1)(γ + εx), βσ(γ, x)〉x,W(2)(γ + εx)〉∧n(Tγ+εxΓX)]
= −

∫
ΓX

µ(dγ)
∫
Λ

γ(dx)[〈∆X
x W

(1)(γ),W(2)(γ)〉∧n(TγΓX)

+〈〈∇X
x W

(1)(γ), Bµ(γ, x)〉x,W(2)(γ)〉∧n(TγΓX)]
=
∫
ΓX

〈HB
µ,nW

(1)(γ),W(2)(γ)〉∧n(TγΓX)µ(dγ).

Corollary 3.7. (EB
µ,n,DΩ

n) is closable onL2
µΩ

n. Its closure(EB
µ,n,D(E

B
µ,n)) is associated

with a positive definite, self-adjoint operator, the Friedrichs extension ofHB
µ,n, which we

also denote byHB
µ,n.

We define(Ẽ
B
µ,n,D(Ẽ

B
µ,n)) as the image of the bilinear form(EB

µ,n,D(E
B
µ,n)) under the

unitaryIn.

Proposition 3.8. LetW(1),W(2) ∈ In(DΩn). Then:

Ẽ
B
µ,n(W

(1),W(2))

=
n∑

k=1

∫
ΓX×Xk

µ(k)(dγ,dx1, . . . ,dxk)

×[〈∇Γ
γ W

(1)(γ, x1, . . . , xk),∇Γ
γ W

(2)(γ, x1, . . . , xk)〉TγΓX⊗T(n){x1,...,xk }X
k

+〈∇Xk

(x1,...,xk)
W(1)(γ, x1, . . . , xk),

∇Xk

(x1,...,xk)
W (2)(γ, x1, . . . , xk)〉T(x1,...,xk)Xk⊗T(n){x1,...,xk }X

k ]. (3.14)

Here, for a fixed(x1, . . . , xk) ∈ X̃k, ∇Γ
γ denotes the gradient of a mapping fromΓ into

T
(n)
{x1,...,xk}X

k defined forµ-a.e.γ ∈ ΓX similar to the gradient of a function onΓ .
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Proof. LetW(1),W(2) ∈ DΩn and letW(i) := InW(i), i = 1,2. Then, byLemma 2.1:

Ẽ
B
µ,n(W

(1),W (2))

= EB
µ,n(W

(1),W(2)) =
∫
ΓX

µ(dγ)
∑
x∈γ
〈∇X

x W
(1)(γ),∇X

x W
(2)(γ)〉TxX⊗∧n(TγΓX)

=
n∑

k=1

∫
ΓX

µ(dγ)
∫
Xk

: γ⊗k : (dx1, . . . ,dxk)

×
∑
x∈γ
〈∇X

x W
(1)
k (γ, x1, . . . , xk),∇X

x W
(2)
k (γ, x1, . . . , xk)〉TxX⊗T(n){x1,...,xk }X

k

=
n∑

k=1

∫
Γ×Xk

µ(k)(dγ,dx1, . . . ,dxk)

×
∑

x∈γ∪{x1,...,xk}
〈∇X

x W
(1)(γ, x1, . . . , xk),∇X

x W
(2)(γ, x1, . . . , xk)〉TxX⊗T(n){x1,...,xk }X

k ,

which is equal to the right hand side of(3.14). �

We will now applyProposition 3.8to prove the vanishing of square-integrable Bochner-
harmonic forms.

Theorem 3.9. Let the conditions ofTheorem 3.5be satisfied, let

σ(k)(γ,Xk) = ∞ forµ-a.e. γ ∈ ΓX, k ∈ N (3.15)

and let one of the two following conditions hold:

(i) For µ-a.e.γ ∈ ΓX, ρ(γ, ·) is continuous and positive onX.
(ii) d ≥ 2 and forµ-a.e.γ ∈ ΓX, ρ(γ, ·) is continuous and positive onX \ γ.

Then, for eachn ∈ N, KerHB
µ,n = {0}.

Proof. We will prove the theorem in the case of (ii), the case (i) being completely similar
and simpler.

First, we note that we can suppose that, for allγ ∈ ΓX, ρ(γ, ·) is continuous and positive
onX \ γ. It suffices to show thatEB

µ,n(W) = 0,W ∈ D(EB
µ,n)⇒ W = 0, or equivalently,

Ẽ
B
µ,n(W) = 0,W ∈ D(Ẽ

B
µ,n) ⇒ W = 0. Here and below, for a bilinear formE we set

E(W) := E(W,W) for W ∈ D(E).
Let us consider the following bilinear form on the Hilbert space(2.17):

Un(W
(1),W (2)) :=

n∑
k=1

Uk,n(W
(1),W (2)),
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Uk,n(W
(1),W (2)) :=

∫
ΓX×Xk

µ(k)(dγ,dx1, . . . ,dxk)〈∇Xk

(x1,...,xk)
W (1)(γ, x1, . . . , xk),

∇Xk

(x1,...,xk)
W (2)(γ, x1, . . . , xk)〉T(x1,...,xk)X

k⊗T(n){x1,...,xk }X
k ,

W (1),W (2) ∈ In(DΩn).

From the existence of the generator ofUn defined onIn(DΩn), it follows thatUn is clos-

able and let(Un,D(Un)) denote its closure. ByProposition 3.8, D(Ẽ
B
µ,n) ⊂ D(Un) and

Ẽ
B
µ,n(W) ≥ Un(W) for all W ∈ D(Ẽ

B
µ,n). Furthermore, it follows from the definition

of Un thatD(Un) = ⊕n
k=1D(Uk,n) andUn =

∑n
k=1Uk,n, where for eachk = 1, . . . , n

(Uk,n,D(Uk,n)) is a closed form onL2
Ψ (ΓX × Xk → ∧n(TXk);µ(k)) =: Hk,n. Hence, it

suffices to show thatUk,n(W) = 0,W ∈ D(Uk,n)⇒W = 0.
ForW ∈ In(DΩn) ∩Hk,n =: Ωk,n, we define

S(W)(γ, x1, . . . , xk) := ‖∇Xk

(x1,...,xk)
W(γ, x1, . . . , xk)‖2

(here and below we omit the notation of the space in the norm if this space is clear from the
context). Let{W (n)} ⊂ Ωk,n and letW (n) →W asn→∞ in the norm

‖ · ‖D(Uk,n) := (‖ · ‖2
Hk,n

+ Uk,n(·))1/2.
Using the inequality

(S(W (n))1/2− S(W (m))1/2)2 ≤ S(W (n) −W (m)),

we conclude that{S(W (n))} is a Cauchy sequence in the norm ofL1(ΓX × Xk;µ(k)). Let
S(W) denote its limit. Then, using the definition ofµ(k), we have

Uk,n(W)=
∫
ΓX

µ(dγ)
∫
Xk

m(dx1) · · ·m(dxk)ρ(k)(γ, x1, . . . , xk)S(W)(γ, x1, . . . , xk),

(3.16)

where

ρ(k)(γ, x1, . . . , xk) := ρ(γ, x1)ρ(γ + εx1, x2) · · · ρ(γ + εx1 + · · · + εxk−1, xk).

Suppose now thatUk,n(W) = 0. Then, by (ii), it follows from(3.16)that, forµ-a.e.γ ∈ ΓX:

S(W)(γ, ·) = 0 m⊗k-a.e.onXk. (3.17)

Let us fixγ ∈ ΓX such that(3.17)holds and letO be an open ball inXk such that

Ō ⊂ Xk,γ := X̃k ∩ (X \ γ)k. (3.18)

Sinceρ(k)(γ, ·) is positive and continuous on̄O:

0 < c1 ≤ ρ(k)(γ, ·) ≤ c2 <∞ onO

and soLp-convergence onOwith respect to the measureσ(k)(γ,dx1, . . . ,dxk) is equivalent
to the same convergence with respect to the measurem⊗k.
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LetW1
2(O) denote the Sobolev space consisting of all functionsf ∈ L2(O;m⊗k) which

are weakly differentiable and whose weak gradient∇Xk
f ∈ L2(O→ TO;m⊗k).

Lemma 3.10. We have‖W(γ, ·)‖ ∈ W1
2(O) and∇X‖W(γ, ·)‖ = 0m⊗k-a.e. onO.

Proof. Let us consider the classical pre-Dirichlet form onL2(O;m⊗k):

E(f (1), f (2))=
∫
O
〈∇Xk

f (1)(x1, . . . , xk),∇Xk

f (2)(x1, . . . , xk)〉T(x1,...,xk)Xk

×m(dx1) · · ·m(dxk),
wheref (1), f (2) ∈ D(E) := C1(Ō). As well known, this pre-Dirichlet form is closable and
let (E,D(E)) denote its closure. Then,D(E) = W1

2(O) and

E(f (1), f (2)) =
∫
O
S(f (1), f (2))(x1, . . . , xk)m(dx1) · · ·m(dxk), f (1), f (2) ∈ D(E),

where

S(f (1), f (2))(x1, . . . , xk) = 〈∇Xk

f (1)(x1, . . . , xk),∇Xk

f (2)(x1, . . . , xk)〉T(x1,...,xk)X
k ,

the gradient∇Xk
being understood in the weak sense.

Hence, taking notice of(3.17), to prove this lemma, it suffices to show that the following
claim is true: letω : O→ ∧n(TO) be a limit of a sequence{ωn} of smoothn-forms onŌ
with respect to the norm(‖ · ‖2

L2(O→∧n(TO);m⊗k) + G(·))1/2, where

G(u) :=
∫
O
‖∇Xk

u(x1, . . . , xk)‖2m(dx1) · · ·m(dxk)

for a smooth formu. Then,‖ω‖ ∈ D(E ) and

S(‖ω‖) ≤ S(ω) m⊗k-a.e.onO. (3.19)

Here,S(ω)(x1, . . . , xk) is constructed analogously to theS(W)(γ, x1, . . . , xk) above.
The proof of this claim is essentially the same as the proof of the fact that, for eachf ∈

D(E), |f | ∈ D(E) andS(|f |) ≤ S(f) m⊗k-a.e., which is why we limit ourselves to only
outline it. So, first one shows by approximation that, for each fixedε > 0,

√〈ω,ω〉 + ε ∈
D(E), and moreover, for any fixedε, ε′ > 0:

S(
√
〈ω,ω〉 + ε−

√
〈ω,ω〉 + ε′ )(x1, . . . , xk)

≤ S(ω)(x1, . . . , xk)

∥∥∥∥ω(x1, . . . , xk)√〈ω,ω〉 + ε
− ω(x1, . . . , xk)√〈ω,ω〉 + ε′

∥∥∥∥
2

m⊗k-a.e. (x1, . . . , xk) ∈ O. (3.20)

Second, one setsεn ↓ 0 and shows using(3.20)that{√〈ω,ω〉 + εn} is a Cauchy sequence
with respect to the norm(‖·‖2

L2(O;m⊗k)+E(·))1/2. The estimate(3.19)then trivially follows.
Thus, the lemma is proved. �
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By Lemma 3.10, it follows that‖W(γ, ·)‖ = const. m⊗k-a.e. onO. Sinced ≥ 2, the set
Xk,γ defined in(3.18)is open and connected, and therefore it can be covered by a countable
number of open balls{On} satisfyingŌn ⊂ Xk,γ . Therefore,‖W(γ, ·)‖ = const. m⊗k-a.e.
onXk,γ , and hencem⊗k-a.e. onXk. Finally, by(3.15), ‖W‖ = 0µ⊗m⊗k-a.e. onΓX×Xk.
Thus, the theorem is proved.

3.3. deRham Laplacian on forms

Let EΩn denote the subset ofFΩn consisting of all formsW ∈ FΩn such that all
derivatives ofW are polynomially bounded, i.e., for eachk ∈ N there existϕ ∈ D, ϕ ≥ 0,
andl ∈ N (depending onW) such that

‖(∇Γ )(k)W(γ)‖2
(TγΓX)⊗k⊗∧n(TγΓX) ≤ 〈ϕ, γ〉

l for all γ ∈ ΓX (3.21)

and additionally, for each fixedγ ∈ ΓX andr ∈ N, the mapping

(X \ γ)r ∩ X̃r 
 (x1, . . . , xr) �→ W(γ + εx1 + · · · + εxr )

∈ ∧n(TγΓX ⊕ Tx1X⊕ · · · ⊕ TxrX)

extends to a smooth form

Xr 
 (x1, . . . , xr) �→ ω(x1, . . . , xr) ∈ ∧n(TγΓX ⊕ Tx1X⊕ · · · ⊕ TxrX)

(Notice that the locality of a form, together with the above condition of extension, will
automatically imply the infinitely differentiability of the form.)

As easily seen,DΩn is a subset ofEΩn, and so we get the following chain of inclusions

DΩn ⊂ EΩn ⊂ FΩn.

We define linear operators

dn : EΩn → EΩn+1, n ∈ Z+, EΩ0 := FC∞b (D, ΓX) (3.22)

by

(dnW)(γ) := (n+ 1)1/2 ASn+1(∇ΓW(γ)), (3.23)

where

ASn+1 : (TγΓX)
⊗(n+1) → ∧n+1(TγΓX) (3.24)

is the antisymmetrization operator. (We notice that the polynomial boundedness of the form
dnW and its derivatives follows from the corresponding boundedness of∇ΓW and the fact
that the norm of the operator(3.24)for eachγ ∈ ΓX is equal to 1.)

Let us now considerdn as an operator acting from the spaceL2
µΩ

n into L2
µΩ

n+1. (We
remark that, by the proof ofLemma 3.4, dnW = 0 µ-a.e. forW ∈ EΩn such thatW = 0
µ-a.e.) We denote byd∗n the adjoint operator ofdn.

Proposition 3.11. Let(3.8)hold. Then, d∗n is a densely defined operator fromL2
µΩ

n+1 into

L2
µΩ

n with domain containingEΩn+1.
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Proof. It follows from (3.23)and the definition of∇Γ that, for anyW ∈ EΩn andγ ∈ ΓX:

(dnW)(γ) =
∑
x∈γ

(dx,nW)(γ), (3.25)

where

(dx,nW)(γ) := (n+ 1)1/2ASn+1(∇X
x W(γ)). (3.26)

Letγ ∈ ΓX andx ∈ γ be fixed. LetC∞(Oγ,x → ∧n(TγΓX)) denote the space of all smooth
sections of the Hilbert bundle(2.6). We define an operator

dXx,n : C∞(Oγ,x → ∧n(TγΓX))→ C∞(Oγ,x → ∧n+1(TγΓX)),

whose action, in local coordinates on the manifoldX, is given by

dXx,n φ(y) h1 ∧ · · · ∧ hn = (n+ 1)1/2∇Xφ(y) ∧ h1 ∧ · · · ∧ hn, (3.27)

φ ∈ C∞(Oγ,x → R), hk ∈ TxkX, xk ∈ γ, k = 1, . . . , n. It follows from (3.26) and (3.27)
that

(dx,nW)(γ) = dXx,nWx(γ, x). (3.28)

Next, letΩ(Oγ,x → ∧n(TγΓX)) denote the space of all sections of the Hilbert bundle(2.6).
We define an operator

δXx,n : C∞(Oγ,x → ∧n+1(TγΓX))→ Ω(Oγ,x → ∧n(TγΓX))
setting

δXx,n φ(y)h1 ∧ · · · ∧ hn+1

:= −(n+ 1)−1/2
n+1∑
i=1

(−1)i−1εx,xi [〈∇Xφ(y), hi〉x + φ(y)〈Bµ(γ, y), hi〉x]h1

∧ · · · ∧�hi ∧ · · · ∧ hn+1, (3.29)

whereφ ∈ C∞(Oγ,x → R), hi ∈ TxiX, xi ∈ γ, i = 1, . . . , n+ 1

εx,xi :=
{

1 x = xi,

0 otherwise

and�hi denotes the absence ofhi. We now set forW ∈ EΩn+1

(δx,n(γ) := δXx,nWx(γ, x) (3.30)

and

(δnW)(γ) :=
∑
x∈γ

(δx,nW)(γ) (3.31)

(Notice that the sum on the right hand side of(3.31)is actually finite.)
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Let us show that, for anyW ∈ EΩn+1, we haveδnW ∈ L2
µΩ

n, whereL2
µΩ

0 :=
L2(ΓX;µ). We choose anyΛ ∈ Oc(X) such thatW(γ) = W(γΛ′) for some compact
Λ′ ⊂ Λ. Then, by(3.31):

∫
ΓX

‖(δnW)(γ)‖2
∧n(TγΓX)µ(dγ)=

∫
ΓX

∥∥∥∥∥∥
∑
x∈γΛ

(δx,nW)(γ)

∥∥∥∥∥∥
2

∧n(TγΓX)
µ(dγ)

≤
∫
ΓX


∑
x∈γΛ

‖(δx,nW)(γ)‖∧n(TγΓX)



2

µ(dγ).

(3.32)

Using(3.21), (3.29) and (3.30), it is not hard to show that there existϕ ∈ C0(X), ϕ ≥ 0,
andk ∈ N (independent ofγ andx) such that

‖(δx,nW)(γ)‖∧n(TγΓX) ≤ 〈ϕ, γ〉k + (n+ 1)1/2|Bµ(γ, x)|x‖W(γ)‖∧n+1(TγΓX)
. (3.33)

Analogously to the proof of(3.13), we get from(2.7), (2.8), (3.8), (3.32) and (3.33)that
δnW ∈ L2

µΩ
n.

Let W(1),W(2) ∈ EΩn and letΛ ∈ Oc(X) be such that, for some compactΛ′ ⊂ Λ

W(i)(γ) = W(i)(γΛ′), i = 1,2, for all γ ∈ ΓX. Then, by(2.10), (3.25), (3.27) and (3.28),
we get using the notations ofSection 2

∫
ΓX

〈dnW(1)(γ),W(2)(γ)〉∧n+1(TγΓX)
µ(dγ)

=
∫
ΓX

µ(dγ)
∫
Λ

γ(dx)〈(dx,nW(1))(γ),W(2)(γ)〉∧n+1(TγΓX
)

=
∫
ΓX

µ(dγ)
∫
Λ

σ(γ,dx)〈(dx,nW(1))(γ + εx),W
(2)(γ + εx)〉∧n+1(Tγ+εxΓX)

=
∫
ΓX

µ(dγ)
∫
Λ

σ(γ,dx)
n∑

k=1

∑
{x1,...,xk}⊂γ∪{x}
x∈{x1,...,xk}

〈(dx,nW(1))k(γ + εx, x1, . . . , xk),

W
(2)
k (γ + εx, x1, . . . , xk)〉∧n+1(Tγ+εxΓX)

=
∫
ΓX

µ(dγ)
n∑

k=1

∑
{x1,...,xk−1}⊂γ

∫
Λ

σ(γ,dx)〈(dx,nW(1))k(γ + εx, x, x1, . . . , xk−1),

W
(2)
k (γ + εx, x, x1, . . . , xk−1)〉∧n+1(Tγ+εxΓX). (3.34)

It follows from the definition ofEΩn that, for a fixedγ ∈ ΓX and{x1, . . . , xk−1} ⊂ γ,
W

(2)
k (γ, ·, x1, . . . , xk−1) extends to a smooth form
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X 
 x �→ W
(2)
k (γ, x, x1, . . . , xk−1) ∈ ⊕

1≤l1,...,lk≤d
l1+···+lk=n

(TxX)
∧l1 ∧ (Tx1X)

∧l2 ∧ · · ·

∧(Txk−1X)
∧lk ⊂ (TxX⊕ Tx1X⊕ Txk−1X)

∧n.

SinceW(1)(γ + ε•) also extends to a smooth form onX, we can carry out an integration
by parts in thex variable in(3.34). Thus, by using(3.29)–(3.31) and (2.10), we continue
(3.34)as follows:

=
∫
ΓX

µ(dγ)
n∑

k=1

∑
{x1,...,xk−1}⊂γ

×
∫
Λ

σ(γ,dx)〈W(1)(γ + εx), δ
X
x,nW

(2)
k (γ + εx, x, x1, . . . , xk−1)〉∧n(Tγ+εxΓX)

=
∫
ΓX

µ(dγ)
∫
Λ

σ(γ,dx)〈W(1)(γ + εx), δ
X
x,nW

(2)
x (γ + εx, x)〉∧n(Tγ+εxΓX)

=
∫
ΓX

µ(dγ)
∫
Λ

σ(γ,dx)〈W(1)(γ + εx), (δx,nW
(2))(γ + εx)〉∧n(Tγ+εxΓX)

=
∫
ΓX

µ(dγ)
∫
Λ

γ(dx) 〈W(1)(γ), (δx,nW
(2))(γ)〉∧n(TγΓX)

=
∫
ΓX

〈W(1)(γ), (δnW
(2))(γ)〉∧n(TγΓX)µ(dγ).

Hence,FΩn+1 ⊂ D(d∗µ,n) andd∗n ⇀ EΩn+1 = δµ,n. �

Corollary 3.12. The operatordn : L2
µΩ

n → L2
µΩ

n+1 is closable.

We denote bȳdn the closure ofdn. The spaceZn := Ker d̄n is then a closed subspace
of L2

πΩ
n. LetBn denote the closure inL2

πΩ
n of the subspace Imdn−1 (of course,Bn =the

closure of Imd̄n−1).
We obviously havedndn−1 = 0, which implies

Im dn−1 ⊂ Ker dn ⊂ Zn.

HenceBn ⊂ Zn and

d̄nd̄n−1 = 0. (3.35)

Thus, we have the infinite complex

· · · dn−1→ EΩn dn→EΩn+1dn+1→ · · ·
and the associated Hilbert complex

· · · d̄n−1→ L2
πΩ

n d̄n→L2
πΩ

n+1d̄n+1→ · · · . (3.36)
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We set in a standard way

Hn
µ = Zn/Bn, n ∈ N.

Forn ∈ N, we define a bilinear formER
µ,n onL2

µΩ
n by

ER
µ,n(W

(1),W(2)) :=
∫
ΓX

[〈d̄nW(1)(γ), d̄nW(2)(γ)〉∧n+1(TγΓX)

+〈d∗n−1W
(1)(γ),d∗n−1W

(2)(γ)〉∧n−1(TγΓX)
]µ(dγ), (3.37)

whereW(1),W(2) ∈ D(ER
µ,n) := D(d̄n) ∩ D(d∗n−1). This form is evidently closed, and

let (HR
µ,n,D(H

R
µ,n)) denote its generator. This operator will be calledthe Hodge–deRham

Laplacian of the measureµ.
The following proposition reflects a quite standard fact in the theory ofL2-cohomologies.

Proposition 3.13. The natural isomorphism betweenHn
µ and the orthogonal complement

ofBn toZn is the isomorphism of the Hilbert spaces

Hn
µ + Ker HR

µ,n. (3.38)

Proof. Using[12, Proposition A.1], we conclude fromProposition 3.11and formula(3.35)
that

L2
µΩ

n = Ker HR
µ,n ⊕ Im dn−1⊕ Im d∗n (3.39)

(the weak Hodge–deRham decomposition). For the closed operatord̄n we have the standard
decomposition

L2
µΩ

n = Ker d̄n ⊕ Im d∗n,

which together with(3.39)implies the result. �

We do not know a priori whether the domainD(HR
µ,n) containsDΩn, however the

following theorem gives a sufficient condition for this.

Theorem 3.14. Let us suppose that

(i) For µ-a.e.γ ∈ ΓX, ρ(γ, x) > 0 for all x ∈ X \ γ and the functionρ(γ, ·) is continuous
onX.

(ii) For µ-a.e.γ ∈ ΓX, ρ(γ, ·) is two times differentiable onX \ γ and∇Xρ(γ, ·) extends
to a continuous form onX.

(iii) For µ ⊗ m-a.e.(γ, x) ∈ ΓX × X, y �→ ∇X
x ρ(γ + εy, x) ∈ TxX is differentiable on

X \ (γ ∪ {x}) and

X \ (γ ∪ {x}) 
 y �→ ρ(γ + εx, y)

ρ(γ + εy, x)
∇X
x ρ(γ + εy, x) ∈ TxX

extends to a continuous mapping onX.
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(iv) (3.8)holds, and furthermore

∀Λ ∈ Oc(X) ∃ε > 0 :
∫
ΓX


∑
y∈γ

∑
x∈γΛ

‖∇X
y Bµ(γ, x)‖TyX⊗TxX




2+ε

µ(dγ) <∞.

(3.40)

Then,DΩn ⊂ D(HR
µ,n) and

HR
µ,n ⇀ DΩ

n = dn−1d∗n−1+ d∗ndn.

Proof. Since byProposition 3.11dnDΩn ⊂ EΩn+1 ⊂ D(d∗n), to prove the theorem we
have to show thatd∗n−1DΩ

n ⊂ D(dn−1), i.e., for arbitraryW(1),W(2) ∈ DΩn, there exits
V ∈ L2

µΩ
n such that∫

ΓX

〈d∗n−1W
(1)(γ),d∗n−1W

(2)(γ)〉∧n(TγΓX) µ(dγ)=
∫
ΓX

〈V(γ),W(2)(γ)〉∧n(TγΓX)µ(dγ).
(3.41)

We choose anyΛ ∈ Oc(X) such that, for some compactΛ′ ⊂ Λ, W(i)(γ) = W(i)(γΛ′),
i = 1,2, for all γ ∈ ΓX. It follows from the proof ofProposition 3.11andLemma 2.1that∫

ΓX

〈d∗n−1W
(1)(γ),d∗n−1W

(2)(γ)〉∧n−1(TγΓX)
µ(dγ)

=
∫
ΓX

∑
x,y∈γΛ

〈δx,nW(1)(γ), δy,nW
(2)(γ)〉∧n−1(TγΓX)

µ(dγ)

=
∫
ΓX

µ(dγ)
∫
Λ

σ(γ,dx)〈δx,nW(1)(γ + εx), δx,nW
(2)(γ + εx)〉∧n−1(Tγ+εxΓX)

+
∫
ΓX

µ(dγ)
∫
Λ

σ(γ,dx)
∫
Λ

σ(γ + εx,dy)〈δx,nW(1)(γ + εx + εy),

δy,nW
(2)(γ + εx + εy)〉∧n−1(Tγ+εx+εyΓX). (3.42)

Due to conditions (i)–(iii), we can see that, forµ-a.e.γ ∈ ΓX andx ∈ X \ γ:

dx,nδx,nW(1)(γ + εx) ∈ ∧n(Tγ+εx)
and forµ⊗m-a.e.(γ, x) ∈ ΓX ×X andy ∈ X \ (γ ∪ {x}):

dy,nδx,nW(1)(γ + εx + εy) ∈ ∧n(Tγ+εx+εyΓX),
using formulas(3.27) and (3.28)for the definition ofdx,n, x ∈ X. Moreover, by virtue of
(i) and (ii), the integration by parts yields, forµ-a.e.γ ∈ ΓX∫

Λ

σ(γ,dx)〈δx,nW(1)(γ + εx), δx,nW
(2)(γ + εx)〉∧n−1(Tγ+εxΓX)

=
∫
Λ

σ(γ,dx)〈dx,nδx,nW(1)(γ + εx),W
(2)(γ + εx)〉∧n(Tγ+εxΓX) (3.43)
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and analogously, using (i) and (iii), we get, forµ⊗m-a.e.(γ, x) ∈ ΓX ×X:∫
Λ

σ(γ + εx,dy) 〈δx,nW(1)(γ + εx + εy), δy,nW
(2)(γ + εx + εy)〉∧n−1(Tγ+εx+εyΓX)

=
∫
Λ

σ(γ + εx,dy)〈dy,nδx,nW(1)(γ + εx + εy),W
(2)(γ + εx + εy)〉∧n(Tγ+εx+εyΓX).

(3.44)

Suppose that

∫
ΓX


∑
x,y∈γ

‖dy,nδx,nW(1)(γ)‖∧n(TγΓX)



2

µ(dγ) <∞ (3.45)

so that

V(γ) :=
∑
x,y∈γ

dy,nδx,nW(1)(γ) ∈ ∧n(TγΓX)

is well defined forµ-a.a.γ ∈ ΓX, and moreoverV ∈ L2
µΩ

n. Then, byLemma 2.1and
(3.43)–(3.45), we continue(3.42)as follows:

=
∫
ΓX

µ(dγ)
∫
Λ

σ(γ,dx)〈dx,nδx,nW(1)(γ + εx),W
(2)(γ + εx)〉∧n(Tγ+εxΓX)

+
∫
ΓX

µ(dγ)
∫
Λ

σ(γ,dx)
∫
Λ

σ(γ + εx,dy)〈dy,nδx,nW(1)(γ + εx + εy),

W(2)(γ + εx + εy)〉∧n(Tγ+εx+εyΓX)
=
∫
ΓX

〈VΛ(γ),W(2)(γ)〉∧n(TγΓX)µ(dγ), (3.46)

where

VΛ(γ) :=
∑

x,y∈γΛ
dy,nδx,nW(1)(γ). (3.47)

SinceVΛ(γ)→ V(γ) asΛ→ X forµ-a.e.γ ∈ ΓX, by the majorized convergence theorem,
we conclude from(3.42), (3.46) and (3.47)that∫

ΓX

〈d∗n−1W
(1)(γ),d∗n−1W

(2)(γ)〉∧n−1(TγΓX)
µ(dγ)

=
∫
ΓX

〈V(γ),W(2)(γ)〉∧n(TγΓX)µ(dγ).

Thus, it remains to show that(3.45)does indeed hold. Let̃Λ ∈ Oc(X) be such that, for
some compactΛ′ ⊂ Λ̃,W(1)(γ) = W(1)(γΛ′) for all γ ∈ ΓX (Λ̃ being now independent of
W(2)). Sinceδx,nW

(1)(γ) = 0 for all x ∈ γΛ̃c , we get
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∫
ΓX


∑
x,y∈γ

‖dy,nδx,nW(1)(γ)‖∧n(TγΓX)



2

µ(dγ)

≤ 2
∫
ΓX


 ∑
x,y∈γ

Λ̃

‖dy,nδW(1)(γ)‖∧n(TγΓX)



2

µ(dγ)

+2
∫
ΓX


 ∑
y∈γ

Λ̃c

∑
x∈γ

Λ̃

‖dy,nδx,nW(1)(γ)‖∧n(TγΓX)



2

µ(dγ). (3.48)

Analogously to(3.33), we conclude from(3.27)–(3.30)the existence ofϕ ∈ C0(X), ϕ ≥ 0,
andk ∈ N (independent ofγ, x, andy) such that

‖dy,nδx,nW(1)(γ)‖∧n(TγΓX) ≤ 〈ϕ, γ〉k(1+ |Bµ(γ, x)|x + ‖∇X
y Bµ(γ, x)‖TyX⊗TxX)

(3.49)

for x, y ∈ γΛ̃, and

‖dy,nδx,nW(1)(γ)‖∧n(TγΓX) ≤ 〈ϕ, γ〉k‖∇X
y Bµ(γ, x)‖TyX⊗TxX (3.50)

for y ∈ γΛ̃c andx ∈ γΛ̃.
Thus, the finiteness of the right hand side of(3.48)can easily be deduced from(2.8),

(3.8), (3.40), (3.49) and (3.50), and the Schwarz inequality. �

Corollary 3.15. Let the conditions ofTheorem 3.14be satisfied. Then, for eachW ∈ DΩn

andµ-a.e.γ ∈ ΓX∑
x,y∈γ

(‖δx,ndy,nW(γ)‖∧n(TγΓX) + ‖dy,nδx,nW(γ)‖|∧n(TγΓX)) <∞ (3.51)

and the action of the operatorHR
µ,n can be represented in the form

HR
µ,nW(γ) =

∑
x,y∈γ

(δx,ndy,n + dy,nδx,n)W(γ), µ-a.e. γ ∈ ΓX.

3.4. Weitzenböck formula

In this section, we will derive a Weitzenböck type formula, which gives a relation between
the Bochner LaplacianHB

µ,n and the deRham LaplacianHR
µ,n. In what follows, we will

suppose that the conditions ofTheorem 3.14are satisfied.
For eachV(γ) ∈ TγΓX, γ ∈ ΓX, we define an annihilation operator

an(V(γ)) : ∧n(TγΓX)→ ∧n−1(TγΓX)

and a creation operator

a∗n(V(γ)) : ∧n−1(TγΓX)→ ∧n(TγΓX)
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as follows:

an(V(γ))Wn(γ) := √n〈V(γ),Wn(γ)〉γ , Wn(γ) ∈ ∧n(TγΓX),
a∗n(V(γ))Wn−1(γ) := √nV(γ) ∧Wn−1(γ), Wn−1(γ) ∈ ∧n−1(TγΓX)

(the pairing in the expression〈V(γ),Wn(γ)〉γ is carried out in the first “variable,” so that
a∗n(V(γ)) becomes the adjoint ofan(V(γ))).

Now, for a fixedγ ∈ ΓX, we define an operatorRn(γ) in ∧n(TγΓX) as follows:

Rn(γ) :=
∑
x∈γ

R(γ, x), D(Rn(γ)) := ∧n0(TγΓX),

Rn(γ, x) :=
d∑

i,j,k,l=1

Ri,j,k,l(x)a
∗
n(ei)an(ej)a

∗
n(ek)an(el).

Here,{ej}dj=1 is a fixed orthonormal basis in the spaceTxX considered as a subspace of
TγΓX,∧n0(TγΓX) consists of allWn(γ) ∈ ∧n(TγΓX) having only a finite number of nonzero
coordinates in the direct sum expansion(2.16), andRijkl is the curvature tensor onX.

Next, letA(γ) ∈ (Tγ,∞ΓX)⊗2, so thatA(γ) = (A(γ, x, y))x,y∈γ , whereA(γ, x, y) ∈
TyX⊗TxX. We realizeA(γ) as a linear operator acting fromTγ,0ΓX intoTγ,∞ΓX by setting

Tγ,0ΓX 
 V(γ) = (V(γ, x))x∈γ �→ A(γ)V(γ)

:=

∑
x∈γ
〈A(γ, x, y), V(γ, x)〉x



y∈γ

∈ Tγ,∞ΓX.

If we additionally suppose that, for anyΛ ∈ Oc(X):

∑
y∈γ


∑
x∈γΛ

‖A(γ, x, y)‖TyX⊗TxX



2

<∞,

then, as easily seen,A(γ) is indeed an operator acting fromTγ,0ΓX into TγΓX. In the
latter case, we define a linear operatorA(γ)∧n in ∧n(TγΓX) with domainD(A(γ)∧n) :=
∧n0(TγΓX) as follows:

A(γ)∧n := A(γ)⊗ 1 · · · ⊗ 1+ 1⊗ A(γ)⊗ 1⊗ · · · ⊗ 1+ · · · + 1⊗ · · · ⊗ 1⊗ A(γ).

We set

B′µ(γ) = (B′µ(γ, x, y))x,y∈γ ∈ (Tγ,∞ΓX)⊗2, B′µ(γ, x, y) := ∇X
y Bµ(γ, x).

It follows from (3.40)that, forµ-a.e.γ ∈ ΓX:

∑
y∈γ


∑
x∈γΛ

‖B′µ(γ, x, y)‖TyX⊗TxX



2

≤

∑
y∈γ

∑
x∈γΛ

‖B′µ(γ, x, y)‖TyX⊗TxX



2

<∞.



286 S. Albeverio et al. / Journal of Geometry and Physics 47 (2003) 259–302

Therefore, the operatorB′µ(γ)∧n : ∧n0(TγΓX) → ∧n(TγΓX) is well defined forµ-a.e.
γ ∈ ΓX.

Theorem 3.16. Let the conditions ofTheorem 3.14be satisfied. Then, we have onDΩn:

HR
µ,nW(γ) = HB

µ,n + Rn(γ)W(γ)− B′µ(γ)
∧nW(γ), µ-a.e. γ ∈ ΓX.

Proof. We fix anyW(1) ∈ DΩn. By Corollary 3.15, we have

HR
µ,nW

(1)(γ)=
∑
x∈γ

(δµ,x,ndx,n + dx,nδµ,x,n)W(1)(γ)

+
∑

x,y∈γ,x %=y
(δµ,x,ndy,n + dy,nδµ,x,n)W(1)(γ). (3.52)

By (2.10) and (3.51), we get for anyW(2) ∈ DΩn

∫
ΓX

〈∑
x∈γ

(δµ,x,ndx,n + dx,nδµ,x,n)W(1)(γ),W(2)(γ)

〉
∧n(TγΓX)

µ(dγ)

=
∫
ΓX

∑
x∈γ

〈
(δµ,x,ndx,n + dx,nδµ,x,n)W(1)(γ),W(2)(γ)

〉
∧n(TγΓX)

µ(dγ)

=
∫
ΓX

µ(dγ)
∫
X

σ(γ,dx)〈(δµ,x,ndx,n + dx,nδµ,x,n)W(1)(γ + εx),

W(2)(γ + εx)〉∧n(Tγ+εxΓX). (3.53)

By a slight modification of the proof of the Weitzenböck formula on the manifoldX (see,
e.g.[19]), we get for a fixedγ ∈ ΓX∫

X

σ(γ,dx)〈(δµ,x,ndx,n + dx,nδµ,x,n)W(1)(γ + εx),W
(2)(γ + εx)〉∧n(Tγ+εxΓX)

=
∫
X

σ(γ,dx)〈−∆X
x W

(1)(γ + εx)− 〈∇X
x W

(1)(γ + εx), βσ(γ, x)〉x
+Rn(γ + εx, x)W

(1)(γ + εx)− (∇X
x βσ(γ, x))

∧nW(1)(γ + εx),

W(2)(γ + εx)〉∧n(Tγ+εxΓX). (3.54)

We note that the function under the sign of integral on the right hand side of equality(3.54),
considered as a function ofγ andx, is integrable with respect to the measureµ(1)(dγ,dx).
Indeed, the integrability of the function

F1(γ, x) := 〈−∆X
x W

(1)(γ + εx)

−〈∇X
x W

(1)(γ + εx), βσ(γ, x)〉x,W(2)(γ + εx)〉∧n(Tγ+εxΓX)
follows from the proof ofTheorem 3.5, the integrability of the function

F2(γ, x) := −〈(∇X
x βσ(γ, x))

∧nW(1)(γ + εx),W
(2)(γ + εx)〉∧n(Tγ+εxΓX)
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follows from the proof ofTheorem 3.14, and the integrability of the function

F3(γ, x) := 〈Rn(γ + εx, x)W
(1)(γ + εx),W

(2)(γ + εx)〉∧n(Tγ+εxΓX)
follows from the estimate

|F3(γ, x)| ≤ n2d4RΛ‖W(1)(γ + εx)‖∧n(Tγ+εxΓX)‖W(2)(γ + εx)‖∧n(Tγ+εxΓX),

where

RΛ := max
i,j,k,l=1,...,d

sup
x∈Λ
|Ri,j,k,l(x)|,

Λ ∈ Oc(X) being such that, for some compactΛ′ ⊂ Λ, W(1)(γ) = W(1)(γΛ′) for all
γ ∈ ΓX.

Hence, by(2.10), (3.53) and (3.54), andTheorem 3.5

∫
ΓX

〈∑
x∈γ

(δµ,x,ndx,n + dx,nδµ,x,n)W(1)(γ),W(2)(γ)

〉
∧n(TγΓX)

µ(dγ)

=
∫
ΓX

〈
HB
µ,nW

(1)(γ)+
∑
x∈γ

Rn(γ, x)W
(1)(γ)

−
∑
x∈γ

(∇X
x Bµ(γ, x))

∧nW(1)(γ),W(2)(γ)

〉
∧n(TγΓX)

µ(dγ). (3.55)

Next, using formulas(3.27)–(3.30), we have

(δµ,x,ndy,n + dy,nδµ,x,n)W(1)(γ)

= −(∇X
y Bµ(γ, x))

∧nW(1)(γ), γ ∈ ΓX, x, y ∈ γ, x %= y. (3.56)

Thus, by(3.52), (3.55) and (3.56), we get, forµ-a.e.γ ∈ ΓX:

HR
µ,nW

(1)(γ)=HB
µ,nW

(1)(γ, x)+ Rn(γ)W
(1)(γ)−

∑
x∈γ

(∇X
x Bµ(γ, x))

∧nW(1)(γ)

−
∑

x,y∈γ,x %=y
(∇X

y Bµ(γ, x))
∧nW(1)(γ)

=HB
µ,nW

(1)(γ)+ Rn(γ)W
(1)(γ)− (B′µ(γ))

∧nW(1)(γ). �

4. Examples

In this section, we will discuss some measures on the configuration spaceΓX to which
the above results are applicable.
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4.1. (Mixed) Poisson measures

Let πz, z > 0, denote the Poisson measure on(ΓX,B(ΓX)) with intensity measurezm.
This measure can be characterized by its Laplace transform∫

Γ

exp[〈f, γ〉]πz(dγ) = exp

(∫
X

(ef(x) − 1)zm(dx)

)
, f ∈ D.

We refer to, e.g.[9,53] for a detailed discussion of the construction of the Poisson measure
on the configuration space. The measureπz satisfies(2.10)with σ(γ,dx) = zm(dx), which
is the so-called Mecke identity[43].

Every measureπz is concentrated on the subsetAz ∈ B(ΓX) consisting of thoseγ ∈ ΓX
for which

lim
n→∞

|γΛn |
m(Λn)

= z,

where(Λn)
∞
n=1 is an extending sequence of sets fromOc(X) such thatΛn → X asn→∞

(see[27,44]).
Let θ be a probability measure on(0,∞). A mixed Poisson measureπθ is defined by

πθ(·) :=
∫ ∞

0
θ(dz)πz(·).

Then, evidentlyπθ satisfies(2.10)with

ρ(γ, x) = zm(dx) for γ ∈ Az.

Let us suppose that∫ ∞

0
znθ(dz) <∞ for all n ∈ N.

Then, condition(2.8)is fulfilled, and furthermore all the theorems ofSection 3are applicable
to the measureπθ.

Let us remark the following interesting fact. The Dirichlet form on functions,(Eπθ ,D(Eπθ )),
is irreducible if and only ifπθ is a pure Poisson measureπz (see[10, Theorem 6.3]). On
the other hand, byTheorem 3.9, the Bochner bilinear forms(EB

πθ,n
,D(EB

πθ,n
)), n ∈ N, are

irreducible for all measuresπθ. In other words, forπθ %= πz there exist square-integrable
nonconstant harmonic functions, but no square-integrable Bochner-harmonic forms.

4.2. Ruelle measures

In this subsection, we will discuss a class of Gibbs measures on the configuration space
overRd . So, letX := Rd , d ∈ N, and letΓ := ΓRd . The volume measurem onRd is now
the Lebesgue measure.

A pair potential is a measurable functionφ : Rd → R∪ {+∞} such thatφ(−x) = φ(x).
We will also suppose thatφ(x) ∈ R for x ∈ Rd \{0}. ForΛ ∈ Oc(R

d), a conditional energy
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E
φ
Λ : Γ → R ∪ {+∞} is defined by

E
φ
Λ(γ) :=

{∑
{x,y}⊂γ,{x,y}∩Λ%=øφ(x− y) if

∑
{x,y}⊂γ,{x,y}∩Λ%=ø|φ(x− y)| <∞,

+∞ otherwise.

GivenΛ ∈ Oc(R
d), we define forγ ∈ Γ and∆ ∈ B(Γ)

Π
z,φ
Λ (γ,∆) := 1{Zz,φΛ <∞}(γ) [Zz,φΛ (γ)]−1

×
∫
Γ

1∆(γΛc + γ ′Λ)exp[−EφΛ(γΛc + γ ′Λ)]πz(dγ
′),

where

Z
z,φ
Λ (γ) :=

∫
Γ

exp[−EφΛ(γΛc + γ ′Λ)]πz(dγ
′).

A probability measureµ on (Γ,B(Γ)) is called a grand canonical Gibbs measure with
interaction potentialφ if it satisfies the Dobrushin–Lanford–Ruelle equation

µΠ
z,φ
Λ = µ for allΛ ∈ Oc(R

d).

Let G(z, φ) denote the set of all such probability measuresµ.
It can be shown[26] that the unique grand canonical Gibbs measure corresponding to

the free case,φ = 0, is the Poisson measureπz.
We rewrite the conditional energyEφΛ in the following form

E
φ
Λ(γ) = E

φ
Λ(γΛ)+W(γΛ|γΛc),

where the term

W(γΛ|γΛc) =
{∑

x∈γΛ,y∈γΛc φ(x− y) if
∑

x∈γΛ,y∈γΛc |φ(x− y)| <∞,

+∞ otherwise
(4.1)

describes the interaction energy betweenγΛ andγΛc . Analogously, we defineW(γ ′|γ ′′)
whenγ ′ ∩ γ ′′ = ø.

We suppose that the interaction potentialφ is stable, i.e., the following condition is
satisfied:

(S) (Stability) There existsB ≥ 0 such that, for anyΛ ∈ Oc(R
d) and for allγ ∈ ΓΛ:

E
φ
Λ(γ) ≥ −B|γ|.

(Notice that the stability condition automatically implies that the potentialφ is semi-bounded
from below.)

Then, anyµ ∈ G(z, φ) satisfies identity(2.10)with

ρ(γ, x) = zexp[−W({x}|γ)]. (4.2)

In fact, this property uniquely characterizes a Gibbs measure in the sense that any probability
measureµ on(Γ,B(Γ)) belongs toG(z, φ) if and only ifµ satisfies(2.10)with ρ(γ, x) given
by (4.2)(cf. [45], see also[32]).
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Let us now describe a class of Gibbs measures which appears in classical statistical
mechanics of continuous systems[51]. For everyr = (r1, . . . , rd) ∈ Zd , we define a cube

Qr := {x ∈ Rd |ri − 1
2 ≤ xi < ri + 1

2}.

These cubes form a partition ofRd . For anyγ ∈ Γ , we setγr := γQr , r ∈ Zd . ForN ∈ N

letΛN be the cube with side length 2N−1, centered at the origin inRd .ΛN is then a union
of (2N − 1)d unit cubes of the formQr.

We formulate the following conditions on the interaction.

(SS) (Superstability) There existA > 0,B ≥ 0 such that ifγ ∈ ΓΛN for someN, then

E
φ
ΛN
(γ) ≥

∑
r∈Zd

[A|γr|2− B|γr|].

This condition is evidently stronger than (S).
(LR) (Lower regularity) There exists a decreasing positive functiona : N → R+ such that∑

r∈Zd
a(‖r‖) <∞

and for anyΛ′,Λ′′ which are finite unions of cubesQr and disjoint, withγ ′ ∈ ΓΛ′ ,
γ ′′ ∈ ΓΛ′′ :

W(γ ′|γ ′′) ≥ −
∑

r′,r′′∈Zd
a(‖r′ − r′′‖)|γ ′r′ | |γ ′′r′′ |.

Here,‖ · ‖ denotes the maximum norm onRd .
(I) (Integrability) We have∫

Rd
|1− e−φ(x)|m(dx) < +∞.

A probability measureµ on (Γ,B(Γ)) is called tempered ifµ is supported by

S∞ :=
∞⋃
n=1

Sn,

where

Sn :=

γ ∈ Γ |∀N ∈ N

∑
r∈ΛN∩Zd

|γr|2 ≤ n2|ΛN ∩ Zd |

 .

By Gt(z, φ) ⊂ G(z, φ) we denote the set of all tempered grand canonical Gibbs measures
(Ruelle measures for short). Due to[51] the setGt(z, φ) is nonempty for allz > 0 and any
potentialφ satisfying conditions (SS), (LR), and (I).

Let us now recall the so-called Ruelle bound (cf.[51]).
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Theorem 4.1. Let φ be a pair potential satisfying conditions(SS), (LR),and (I), and
let µ ∈ Gt(z, φ), z > 0. Then, for any n ∈ N and any measurable symmetric function
f (n) : (Rd)n → [0,∞], we have

∫
Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)µ(dγ)

= 1

n!

∫
(Rd)n

f (n)(x1, . . . , xn)k
(n)
µ (x1, . . . , xn)m(dx1) · · ·m(dxn),

wherek(n)µ is a nonnegative measurable symmetric function on(Rd)n, called thenth corre-
lation function of the measureµ, and this function satisfies the following estimate

∀ (x1, . . . , xn) ∈ (Rd)n : k(n)µ (x1, . . . , xn) ≤ ξn, (4.3)

whereξ > 0 is independent ofn.

The above theorem particularly implies that any Ruelle measureµ satisfies(2.8).
We suppose:

(S1) There existsr > 0 such that

∫
B(r)c

|φ(x)|m(dx) <∞,

whereB(r) denotes the open ball inRd of radiusr centered at the origin.

Lemma 4.2. Let (SS), (LR), (I),and(S1)hold. Then:

∑
y∈γ

|φ(x− y)| <∞ forµ⊗m-a.e. (γ, x) ∈ Γ × R.

Moreover, for µ⊗m-a.e.(γ, x) ∈ Γ × Rd

ρ(γ, x) = zexp


−∑

y∈γ
φ(x− y)


 > 0.

Proof. It is enough to show that, for anyΛ ∈ Oc(R)∑
y∈γ(Λr)c

|φ(x− y)| <∞ forµ⊗m-a.e. (γ, x) ∈ Γ ×Λ, (4.4)

whereΛr := {y ∈ Rd : d(y,Λ) ≤ r}, d(y,Λ) denoting the distance fromy toΛ.
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By Theorem 4.1and (S1):∫
Γ

µ(dγ)
∫
Λ

m(dx)
∑

y∈γ(Λr)c
|φ(x− y)|

=
∫
Λ

m(dx)
∫
Γ

µ(dγ)
∫
Rd
γ(dy)|φ(x− y)|1(Λr)c (y)

=
∫
Λ

m(dx)
∫
Rd
m(dy)k(1)µ (y)|φ(x− y)|1(Λr)c (y)

≤ ξ

∫
Λ

m(dx)
∫
(Λr)c

m(dy)|φ(x− y)|

≤ ξm(Λ)

∫
B(r)c

|φ(y)|m(dy) <∞,

which implies(4.4). The second conclusion of the lemma now trivially follows from(4.1)
and (4.2). �

We also suppose that the two following conditions are satisfied (compare with[10]).

(D) (Differentiability) e−φ is weakly differentiable onRd , φ is weakly differentiable on
Rd \{0}, and the weak gradient∇φ (which is a locallym-integrable function onRd \{0})
considered as anm-a.e. defined function onRd satisfies

∇φ ∈ L1(Rd, e−φm) ∩ L3(Rd, e−φm). (4.5)

Remark 4.3. It follows from (D) that

∇ e−φ = −∇φ e−φ m-a.e.onRd.

(S2) There existsR > 0 such that∫
B(R)c

|∇φ(x)|m(dx) <∞.

Proposition 4.4. Let (SS), (LR), (I), (D), (S1)and (S2) hold. Then, anyµ ∈ Gt(z, φ),
z > 0, satisfies the conditions ofTheorem 3.5and

Bµ(γ, x) = −
∑

y∈γ\{x}
∇φ(x− y), x ∈ γ, µ-a.e. γ ∈ ΓX. (4.6)

Proof. We first prove that, forµ-a.e.γ ∈ ΓX ρ(γ, ·) is weakly differentiable onRd . We fix
anyf ∈ D andv, a smooth vector field onRd with compact support, and letΛ ∈ Oc(R

d)

be such that the supports of bothf andv are contained inΛ. Let (ΛN)
∞
N=1 be the sequence

of subsets ofRd as in (SS). LetN ∈ N be so big thatΛR ⊂ ΛN . Then, usingRemark 4.3,
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we get

∫
Λ

exp


− ∑

y∈γΛN
φ(x− y)


 〈∇f(x), v(x)〉zm(dx)

=
∫
Λ

exp


− ∑

y∈γΛN
φ(x−y)


 f(x)


 ∑
y∈γΛN

〈∇φ(x− y), v(x)〉 − div v(x)


 zm(dx)

=
∫
Λ

exp


− ∑

y∈γΛN
φ(x−y)


 f(x)


 ∑
y∈γ

ΛR

〈∇φ(x− y), v(x)〉 − div v(x)


 zm(dx)

+
∫
Λ

exp


− ∑

y∈γΛN
φ(x− y)


 f(x)


 ∑
y∈γ

ΛN \ΛR
〈∇φ(x− y), v(x)〉


 zm(dx).

(4.7)

We know from[52, Lemma 5.1, Proposition 5.2 and its proof]that, for eachγ ∈ S∞, there
exists a constantC(γ) > 0 such that

∀N ∈ N,∀ x ∈ Λ : exp[−W({x}|γΛN )] ≤ C(γ). (4.8)

Moreover, analogously to the proof of(4.4), we conclude from (S2) that∫
Λ

∑
y∈γ

(ΛR)c

|∇φ(x− y)|zm(dx) <∞ forµ-a.e. γ ∈ ΓX. (4.9)

Now, by virtue ofLemma 4.2, (4.5), (4.7)–(4.9), and the majorized convergence theorem,
we get

∫
Λ

exp


−∑

y∈γ
φ(x− y)


 〈∇f(x), v(x)〉zm(dx)

=
∫
Λ

exp


−∑

y∈γ
φ(x− y)


 f(x)


∑
y∈γ

〈∇φ(x− y), v(x)〉 − div v(x)


 zm(dx).

Therefore, forµ-a.e.γ ∈ Γ , ρ(γ, ·) is weakly differentiable onRd and

βσ(γ, x) = −
∑
y∈γ

∇φ(x− y),

so thatBµ is given by(4.6).



294 S. Albeverio et al. / Journal of Geometry and Physics 47 (2003) 259–302

Finally, let us show that, for anyΛ ∈ Oc(R
d):

∫
Γ


∑
x∈γΛ

∑
y∈γ\{x}

|∇φ(x− y)|



3

µ(dγ)

= 1

8

∫
Γ


 ∑
{x,y}⊂γ

|∇φ(x− y)|(1Λ(x)+ 1Λ(y))




3

µ(dγ) <∞, (4.10)

which implies(3.8)with ε = 1.
The proof of(4.10)is essentially analogous to that of[10, Lemma 4.1], so we only sketch

it. By using[32, Proposition 3.11]andTheorem 4.1, we get, for any nonnegative symmetric
functionϕ(2)(x, y) on (Rd)2:

∫
Γ


 ∑
{x,y}⊂γ

ϕ(2)(x, y)




3

µ(dγ)

= c1

∫
(Rd)6

ϕ(2)(x1, x2)ϕ
(2)(x3, x4)ϕ

(2)(x5, x6)k
(6)
µ (x1, . . . , x6)m(dx1) · · ·m(dx6)

+ c2

∫
(Rd)5

ϕ(2)(x1, x2)ϕ
(2)(x1, x3)ϕ

(2)(x4, x5)k
(5)
µ (x1, . . . , x5)m(dx1) · · ·m(dx5)

+
∫
(Rd)4

(c3ϕ
(2)(x1, x2)

2ϕ(2)(x3, x4)+ c4ϕ
(2)(x1, x2)ϕ

(2)(x2, x3)ϕ
(2)(x3, x4)

+c5ϕ
(2)(x1, x2)ϕ

(2)(x1, x3)ϕ
(2)(x1, x4))k

(4)
µ (x1, . . . , x4)m(dx1) · · ·m(dx4)

+ c6

∫
(Rd)3

(ϕ(2)(x1, x2)
2ϕ(2)(x1, x3)+ c7ϕ

(2)(x1, x2)ϕ
(2)(x1, x3)ϕ

(2)(x2, x3))

×k(3)µ (x1, x2, x3)m(dx1)m(dx2)m(dx3)

+c8

∫
(Rd)2

ϕ(2)(x1, x2)
3k(2)µ (x1, x2)m(dx1)m(dx2), (4.11)

wherec1, . . . , c8 > 0. We recall also the estimate (cf.[10, formula (4.29)])

∀ (x1, . . . , xn) ∈ (Rd)n : k(n)µ (x1, . . . , xn) ≤ Rn exp


− ∑

1≤i<j≤n
φ(xi−xj)


 , (4.12)

wheren ∈ N andRn > 0. Finally, one proves(4.10)by using(4.5), (4.11) and (4.12), and
the semi-boundedness of the potentialφ from below. �

Proposition 4.5. Let the conditions ofProposition 4.4be satisfied, let for someR > 0

φ(x) ≤ 0, x ∈ B(R)c (4.13)

and let one of the two following conditions is satisfied:
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(a) φ ∈ C(Rd) and for eachγ ∈ S∞ the series
∑

x∈γ φ(· − x) converges locally uniformly
onX.

(b) d ≥ 2, φ ∈ C(Rd \ {0}), and for eachγ ∈ S∞ the series
∑

x∈γ φ(· − x) converges
locally uniformly onX \ γ.

Then, the conditions ofTheorem 3.9are satisfied for eachµ ∈ Gt(z, φ).

Proof. Evidently, (a) implies condition (i) ofTheorem 3.9and (b) does (ii), so that we only
have to show(3.15). Let us fix anyγ ∈ S∞. It follows from the definition ofS∞ that there
existsC = C(γ) ∈ N such that

|γΛN | ≤ Cm(ΛN), N ∈ N. (4.14)

Let us assume that in(4.13)R = 1/4, otherwise only a trivial modification of the proof is
needed.

Fora > 0, let [a] denote the integer part ofa. Supposing that there exist [1/2(2N−1)d ]+1
Qr cubes inΛN which contain at least 3C points ofγ, we come to a contradiction with
(4.14). Therefore, there exist at least(2N−1)d − [1/2(2N−1)d ] cubes which contain less
than 3C points ofγ. SettingN → ∞, we conclude that there exists an infinite sequence
{Qr(k), k ∈ N} of cubes which contain< 3C points ofγ. Let xk denote the center of the
cubeQr(k). Then:

∀ x ∈ B(xk, 1
4), k ∈ N : |B(x, 1

4) ∩ γ| < 3C. (4.15)

In case of (a), we get by(4.15):

∀ x ∈ B(xk, 1
4), k ∈ N :

∑
y∈γ

φ(x− y) ≤ const. (4.16)

and hence

∀ x ∈ B(xk, 1
4), k ∈ N : ρ(γ, x) ≥ exp(−const). (4.17)

Therefore,σ(γ, ·), as well as all measuresσ(k)(γ, ·), k ≥ 2, are infinite measures.
In the case of (b), we proceed as follows. Any ballB(xk,1/4) contains 3C open disjoint

balls of of radius 1/(12C), and at least one of these balls does not contain any point ofγ.
Therefore, eachB(xk,1/4) contains a ballB(yk,1/(24C)) such that

∀ x ∈ B
(
yk,

1

24C

)
: inf y∈γ |x− y| ≥ 1

24C
. (4.18)

By (b) the functionφ is bounded on{x ∈ Rd : 1/(24C) ≤ |x| ≤ R}, and therefore by
(4.15) and (4.18), we again conclude that allσ(k)(γ, ·), k ∈ N are infinite measures. �

Proposition 4.6. Let(SS), (LR), (I),and(S2)hold. Furthermore, let the interaction poten-
tial φ satisfy the following conditions:

(i) φ ∈ C2(Rd \ {0}), e−φ is continuous onRd , and e−φ∇φ extends to a continuous
vector-valued function onRd .
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(ii) For eachγ ∈ S∞, the series
∑

x∈γ φ(· − x),
∑

x∈γ ∇φ(· − x), and
∑

x∈γ φ′′(· − x)

converge locally uniformly onX \ γ.
(iii) (4.5)holds, and furthermore:

φ′′ ∈ L1(Rd, e−φm) ∩ L3(Rd, e−φm). (4.19)

Then, anyµ ∈ Gt(z, φ), z > 0, satisfies the conditions ofTheorem 3.14

Proof. As easily seen, conditions (i)–(iii) ofTheorem 3.14are now satisfied. Indeed, let us
fix anyγ ∈ S∞. By condition (ii):

ρ(γ, x) = exp


−∑

y∈γ
φ(x− y)


 > 0, x ∈ Rd \ γ. (4.20)

It follows from the definition ofS∞ that, for anyy ∈ S∞, γ \ {y} again belongs toS∞, and
therefore, the function

Oγ,y 
 x �→ exp


−∑

z∈γ
φ(x− z)


 = exp[−φ(x− y)]exp


− ∑

z∈γ\{y}
φ(x− z)




is continuous by (i) and (ii). Hence,ρ(γ, ·) is continuous onRd . Moreover, by (i), (ii), and
(4.20), the functionρ(γ, ·) is two times differentiable onRd \ γ, and analogously to the
above, we conclude that the form

Oγ,y 
 x �→ ∇xρ(γ, x)=−exp


−φ(x− y)−

∑
z∈γ\{y}

φ(x− z)




×

∇φ(x− y)+

∑
z∈γ\{y}

∇φ(x− z)




is continuous onOγ,y, so that∇xρ(γ, ·) is continuous onRd . Finally, for anyx ∈ Rd \ γ:

∇xρ(γ + εy, x)=−exp


−φ(x− y)−

∑
z∈γ

φ(x− z)




×

∇φ(x− y)+

∑
z∈γ
∇φ(x− z)




is differentiable iny onRd \ (γ ∪ {x}), and

ρ(γ + εx, y)

ρ(γ + εy, x)
∇xρ(γ + εy, x)

= −exp


−φ(x− y)−

∑
z∈γ

φ(z− y)




∇φ(x− y)+

∑
z∈γ
∇φ(x− z)




extends to a continuous form iny onRd .
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That(3.8)holds follows from(4.5)and (S2) (see the proof ofProposition 4.4). Thus, it
only remains to show that(3.40)is also satisfied.

It follows from the above that, for eachγ ∈ S∞:

Bµ(γ, x) = −
∑

y∈γ\{x}
∇φ(x− y), x ∈ γ,

and hence, by (i), (ii), we get for anyx, y ∈ γ:

∇yBµ(γ, x) =
{
φ′′(x− y) if x %= y,

−∑z∈γ\{x}φ′′(x− z) if x = y.

Hence, for anyΛ ∈ Oc(R
d), we get

∫
Γ


∑
y∈γ

∑
x∈γΛ

‖∇yBµ(γ, x)‖



3

µ(dγ)

=
∫
Γ


∑
x∈γΛ

‖∇xBµ(γ, x)‖ +
∑
x∈γΛ

∑
y∈γ\{x}

‖∇yBµ(γ, x)‖



3

µ(dγ)

≤

2

∑
x∈γΛ

∑
y∈γ\{x}

‖φ′′(x− y)‖



3

µ(dγ). (4.21)

The finiteness of the latter integral in(4.21)follows from (4.19)in the same way as(4.10)
follows from(4.5). �

Remark 4.7. Let the interaction potentialφ satisfy conditions ofProposition 4.6. Then,
by usingLemma 2.1, Theorem 3.16, andProposition 4.4, we easily see that, for every
W ∈ DΩ1:

ER
µ,1(W,W)=

∫
Γ

µ(dγ)
∫
Rd
m(dx)exp


−∑

y∈γ
φ(x− y)


 |∇xW(γ + εx, x)|2

+ 1

2

∫
µ(dγ)

∫
Rd
m(dx)

∫
Rd
m(dy)

×exp


−∑

x′∈γ
φ(x− x′)−

∑
y′∈γ

φ(y − y′)− φ(x− y)




×φ′′(x− y)(W(γ + εx + εy, x)−W(γ + εx + εy, y))

× (W(γ + εx + εy, x)−W(γ + εx + εy, y)).

Finally, we present several examples of potentials which satisfy conditions ofPropositions
4.4 and 4.6.
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Example 1. φ ∈ C2
0(R

d), φ ≥ 0 onRd , andφ(0) > 0.

Example 2. (Lennard–Jones type potentials)φ ∈ C2(Rd \ {0}), φ ≥ 0 on Rd , φ(x) =
c|x|−α for x ∈ B(r1), φ(x) = 0 for x ∈ B(r2)c, wherec > 0,α > 0, 0< r1 < r2 <∞.

Example 3. (Lennard–Jones 6–12 potentials)d = 3,φ(x) = c(|x|−12− |x|−6), c > 0.

4.3. Gibbs measures on configuration spaces over manifolds

In this subsection, we will shortly discuss the case of a Gibbs measureµ onΓX, where
X is again a general manifold.

We formulate the following conditions on the interaction potentialφ, which is now a
symmetric functionsφ : X2 → R ∪ {+∞}.
(S) (Stability) There existsB ≥ 0 such that, for anyΛ ∈ Oc(X) and for allγ ∈ ΓΛ:

E
φ
Λ(γ) :=

∑
{x,y}⊂γ

φ(x, y) ≥ −B|γ|.

(I) (Integrability) We have

C := ess sup
x∈X

∫
X

|e−φ(x,y) − 1|m(dy) <∞.

(F) (Finite range) There existsR > 0 such that

φ(x, y) = 0 if d(x, y) ≥ R.

In a completely analogous way as for the case ofRd , one defines a Gibbs measureµ
corresponding to the interaction potentialφ and activity parameterz > 0, and one denotes
by G(z, φ) the set of all such measures.

Theorem 4.8 ([33–35]).

(1) Let (S), (I),and(F) hold, and letz > 0 be such that

z <
1

2 e
(e2BC)−1,

whereB andC are as in(S) and (I), respectively. Then, there exists a Gibbs measure
µ ∈ G(z, φ) such that the correlation functionsk(n)µ of the measureµ satisfy the Ruelle
bound(4.3).

(2) Letφ be a nonnegative potential which fulfills(I) and(F). Then, for eachz > 0, there
exists a Gibbs measureµ ∈ G(z, φ) such that the correlation functionsk(n)µ of the
measureµ satisfy the Ruelle bound(4.3).

Proposition 4.9. Suppose the conditions ofTheorem 4.8are satisfied and furthermore
suppose that the interaction potentialφ satisfies the following conditions:
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(i) φ ∈ C2(X2\X̃2), e−φ is continuous onX2, ande−φ∇X
1 φ extends to a continuous vector

field onX2 (here∇X
1 φ denotes the gradient of the functionφ in the first variable);

(ii) We have

ess sup
x∈X

∫
X

|(∇X
x )

kφ(x, y)|n exp(−φ(x, y))m(dy) <∞, k = 1,2, n = 1,2,3.

Letµ ∈ G(z, φ) be as inTheorem 4.8. Then,µ satisfies the conditions ofTheorems 3.5 and
3.14.

Proof. The proof of this proposition essentially follows the lines of the proof ofProposition
4.6, and is even easier, since due to condition (F) all series

∑
y∈γ φ(x, y), γ ∈ ΓX, x ∈ X\γ,

are finite. �

Proposition 4.10. Suppose that the manifoldX satisfies the following condition:

∀ r > 0 : 0< inf
x∈X

m(B(x, r)) ≤ sup
x∈X

m(B(x, r)) <∞. (4.22)

Assume that the conditions ofProposition 4.9are satisfied and eitherφ is a continuous
bounded function onX2, or d ≥ 2 and

∀ r > 0 : sup
x∈X

sup
y∈X,d(x,y)≥r

|φ(x, y)| <∞.

Letµ ∈ G(z, φ) be as inTheorem 4.8. Then, the conditions ofTheorem 3.9are satisfied.

Remark 4.11. Condition (4.22) is satisfied in the case of a manifold having bounded
geometry (see[21]). The upper estimate supx∈Xm(B(x, r)) <∞, r > 0, holds for manifolds
having nonnegative Ricci curvature (see, e.g.[21, Proposition 5.5.1]).

Proof. Let us fix any sequence{B(xn,2R), n ∈ N} of disjoint balls inX, whereR is as in
(F). Let

ΛN :=
N⋃
n=1

B(xn,2R), N ∈ N. (4.23)

By (4.22),m(ΛN)→∞ asN →∞. By Theorem 4.8, the correlation functionsk(n)µ satisfy
the Ruelle bound. Hence, it follows from (the proof of)[32, Theorem 2.5.4]that there exists
a subsequence{ΛN(k), k ∈ N} such that, forµ-a.e.γ ∈ Γ , there existsC = C(γ) > 0
satisfying

|γΛN(k)
| ≤ Cm(ΛN(k)) for all k ∈ N. (4.24)

By (4.22)–(4.24):

|γΛN(k)
| ≤ C

(
sup
x∈X

m(B(x,2R))

)
N(k), k ∈ N.
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Since by(4.22) inf x∈Xm(B(x, r)) > 0, r > 0, the rest of the proof is now completely
analogous to the proof ofProposition 4.5. �

Example. Suppose that the manifoldX satisfies(4.22), and for someR > 0

sup
x∈X

sup
y∈B(x,R)

|∇X
y f(x, y)|TyX <∞, k = 1,2,

where

X2 
 (x, y) �→ f(x, y) := d(x, y)2 ∈ R.

(For example, these conditions are satisfied if the manifold has a periodical structure.) Let
Φ ∈ C2([0,∞)) be such thatΦ ≥ 0 on [0,∞) andΦ(x) = 0 for x ≥ R2. Then, the
potentialφ(x, y) := Φ(f(x, y)) satisfies the conditions ofPropositions 4.9 and 4.10.
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